CancerNext ®

There are many choices available for genetic testing, but when it comes determining a patient’s health risks, accuracy is key. Learn how Ambry’s CancerNext provides clinicians with accurate results to inform patient care.

When finding the answer is critical for guiding your patient’s healthcare, CancerNext is a comprehensive 36-gene panel that identifies inherited risks for at least 8 types of cancers, giving you more information for treatment and management decisions.

Quick Reference
Test Code 8824
Turnaround Time (TAT) 14-21 days
Number of Genes 36

+RNAinsight®

Add +RNAinsight to your genetic test order today.

Learn more

Ordering Options

We offer family variant testing at no additional cost

for all blood relatives of patients who undergo full single gene sequencing or multigene panel testing* at Ambry Genetics and are found to have a pathogenic or likely pathogenic variant. No-cost testing of blood relatives must be completed within 90 days of the original Ambry report date.

Order Now

*excludes Secondary Findings and SNP Array tests


Why Is This Important?

  1. Option to modify frequency and initial age of mammogram/breast MRI, colonoscopy, prostate cancer screening, or other screening as appropriate
  2. Consideration of prophylactic mastectomy, colectomy, or other risk-reducing measures, as appropriate 
  3. Option to tailor treatment and/or determine eligibility for clinical trials 
  4. Identify at-risk family members 

When To Consider Testing

  • Multiple primary tumors in one person that are suspicious for a combination of hereditary breast, ovarian, colorectal, uterine cancers and/or melanoma
  • 3 or more close family members with cancers, such as breast, ovarian, colorectal, and uterine, that are suspicious for hereditary cancer 
  • Previous genetic testing was uninformative (negative or variant of uncertain significance) for a patient with a personal and/or family history suspicious for hereditary cancer

 

Test Description

CancerNext analyzes 36 genes (listed above). These genes (excluding EPCAM and GREM1) are evaluated by next generation sequencing (NGS) or Sanger sequencing of all coding domains, and well into the flanking 5’ and 3’ ends of all the introns and untranslated regions. For POLD1 and POLE, only missense and in-frame indel variants in the exonuclease domains (codons 311-541 and 269-485, respectively) are routinely reported. For HOXB13, only variants impacting codon 84 are routinely reported. For RECQL, only missense variants in the helicase and RCQ domains (codons 63-592) and exonic truncating variants are routinely reported. The MSH3 polyalanine repeat region is excluded from analysis. The inversion of coding exons 1-7 of the MSH2 gene and the BRCA2 Portuguese founder mutation, c.156_157insAlu (also known as 384insAlu) are detected by NGS and confirmed by PCR and agarose gel electrophoresis. 

Clinically significant intronic findings beyond 5 base pairs are always reported. Intronic variants of unknown or unlikely clinical significance are not reported beyond 5 base pairs from the splice junction. Additional Sanger sequencing is performed for any regions missing or with insufficient read depth coverage for reliable heterozygous variant detection. Potentially homozygous variants, variants in regions complicated by pseudogene interference, and variant calls not satisfying depth of coverage and variant allele frequency quality thresholds are verified by Sanger sequencing.  

Gross deletion/duplication analysis is performed for the covered exons and untranslated regions of all sequenced genes (excluding HOXB13, POLD1, POLE) using read-depth from NGS data with confirmatory multiplex ligation-dependent probe amplification (MLPA) and/or targeted chromosomal microarray. For GREM1, only the status of the 40kb 5’ UTR gross duplication is analyzed and reported. For EPCAM, only gross deletions encompassing the 3’ end of the gene are reported. For NTHL1, only full-gene gross deletions and duplications are detected. For APC, all promoter 1B gross deletions as well as single nucleotide substitutions within the promoter 1B YY1 binding motif (NM_001127511 c.-196_c.-186) are analyzed and reported. Gross deletion/duplication analysis of PMS2 is performed using MLPA. If a deletion is detected in exons 13, 14, or 15 of PMS2, double stranded sequencing of the appropriate exon(s) of the pseudogene, PMS2CL, will be performed to determine if the deletion is located in the PMS2 gene or pseudogene.   

View Full Menu

Search Results

Start your search...