Visit our secure online portal to start your order.
AmbryPort Login or Create an AccountConfidently guiding patient care through reliable results
Finding answers through superior variant interpretation
Understanding human disease through innovation, research, and partnerships
Will insurance cover my patient's genetic test?
Click HereWhy partner with us?
Learn MoreWe are driven to give healthcare providers the most advanced testing information available so you can determine the best treatment options for your patients.
Test Code | 8122 |
Turnaround Time (TAT) | 4-5 weeks |
Number of Genes | 21 |
We now offer single site analysis (SSA) at no additional cost to family members
following single gene or panel testing* of the first family member (proband) within 90 days of the original Ambry report date.
Order Now*excludes Secondary Findings and SNP Array tests
60-70% of patients with a clinical presentation of PCD and PCD-related disorders have a detectable mutation on this panel (clinical sensitivity).1 Ambry's PCDNext testing can detect >99.9% of described mutations in the included genes listed above, when present (analytic sensitivity).
Our Primary Ciliary Dyskinesia panel includes next generation sequencing (NGS) and deletion/duplication analysis of the ARMC4, CCDC103, CCDC114, CCDC39, CCDC40, CFTR, DNAAF1, DNAAF2, DNAAF3, DNAAF5, DNAH5, DNAH11, DNAI1, DNAI2, LRRC6, OFD1, RPGR, RSPH4A, RSPH9, SPAG1, and TXNDC3 genes. Genomic deoxyribonucleic acid (gDNA) is isolated from the patient’s specimen using a standardized kit and quantified. Sequence enrichment of the targeted coding exons and adjacent intronic nucleotides is carried out by a bait-capture methodology using long biotinylated oligonucleotide probes, followed by polymerase chain reaction (PCR) and NGS. Additional Sanger sequencing is performed for any regions missing, or with insufficient read depth coverage for reliable heterozygous variant detection. Reportable small insertions and deletions, potentially homozygous variants, variants in regions complicated by pseudogene interference, and single nucleotide variant calls not satisfying 100x depth of coverage and 40% het ratio thresholds are verified by Sanger sequencing.16 This test targets detection of DNA sequence mutations in all coding domains, and well into the 5’ and 3’ ends of all the introns and untranslated regions. Gross deletion/duplication analysis is performed using a custom pipeline based on read-depth from NGS data and/or utilizing a targeted chromosomal microarray with confirmatory MLPA when applicable.
HGVS | HUGO Gene Name | Disease |
m.583G>A | MT-TF | MELAS / MM & EXIT |
m.1494C>T | MT-RNR1 | DEAF |
m.1555A>G | MT-RNR1 | DEAF |
m.1606G>A | MT-TV | AMDF |
m.1644G>A | MT-TV | HCM+MELAS |
m.3243A>G | MT-TL1 | MELAS / LS/DMDF / MIDD / SNHL / FSGS / CPEO |
m.3251A>G | MT-TL1 | MELAS |
m.3252A>G | MT-TL1 | MELAS |
m.3256C>T | MT-TL1 | MELAS |
m.3260A>G | MT-TL1 | MMC |
m.3271T>C | MT-TL1 | MELAS |
m.3291T>C | MT-TL1 | MELAS / Myopathy / Deafness+Cognitive Impairment |
m.3302A>G | MT-TL1 | MM |
m.3303C>T | MT-TL1 | MMC |
m.3460G>A | MT-ND1 | LHON |
m.3635G>A | MT-ND1 | LHON |
m.3697G>A | MT-ND1 | MELAS/LS/LDYT |
m.3700G>A | MT-ND1 | LHON |
m.3733G>A | MT-ND1 | LHON |
m.3890G>A | MT-ND1 | Progressive encephalomyopathy / LS / optic atrophy |
m.4171C>A | MT-ND1 | LHON |
m.4269A>G | MT-TI | FICP |
m.4274T>C | MT-TI | CPEO/Motor Neuron Disease |
m.4298G>A | MT-TI | CPEO / MS |
m.4300A>G | MT-TI | MICM |
m.4308G>A | MT-TI | CPEO |
m.4332G>A | MT-TQ | Encephalopathy / MELAS |
m.5537_5538insT | MT-TW | Leigh Syndrome |
m.5650G>A | MT-TA | Myopathy |
m.5703G>A | MT-TN | CPEO/MM |
m.7222A>G | MT-CO1 | peripheral neuropathy, muscle weakness, ptosis, abnormal muscle pathology |
m.7445A>G | MT-TS1 | SNHL |
m.7471dupC | MT-TS1 | PEM/AMDF/Motor neuron disease-like |
m.7497G>A | MT-TS1 | MM / EXIT |
m.7511T>C | MT-TS1 | SNHL |
m.8344A>G | MT-TK | MERRF |
m.8356T>C | MT-TK | MERRF |
m.8363G>A | MT-TK | MICM+DEAF/ MERRF/ Autism/ LS/ Ataxia+Lipomas |
m.8969G>A | MT-ATP6 | Mitochondrial Myopathy, Lactic Acidosis, |
m.8993T>C | MT-ATP6 | NARP/Leigh Disease/MILS/other |
m.8993T>G | MT-ATP6 | NARP/Leigh Disease/MILS/other |
m.9176T>C | MT-ATP6 | FBSN/Leigh Disease |
m.9176T>G | MT-ATP6 | Leigh Disease/Spastic Paraplegia |
m.9185T>C | MT-ATP6 | Leigh Disease/Ataxia/NARP-like disease |
m.10010T>C | MT-TG | PEM |
m.10158T>C | MT-ND3 | Leigh Disease |
m.10191 T>C | MT-ND3 | Leigh Disease/Leigh-like Disease/ESOC |
m.10197G>A | MT-ND3 | Leigh Disease/Dystonia/Stroke/LDYT |
m.10663T>C | MT-ND4L | LHON |
m.11777C>A | MT-ND4 | Leigh Disease |
m.11778G>A | MT-ND4 | LHON, Progressive Dystonia |
m.12147G>A | MT-TH | MERRF-MELAS/Enchephalopathy |
m.12258C>A | MT-TS2 | DMDF / RP+SNHL |
m.12315G>A | MT-TL2 | CPEO/KSS |
m.12320A>G | MT-TL2 | Myopatrhy |
m.12706T>C | MT-ND5 | Leigh Disease |
m.13513G>A | MT-ND5 | Leigh Disease/MELAS/LHON-MELAS Overlap Syndrome |
m.13514A>G | MT-ND5 | Leigh Disease/MELAS |
m.14459G>A | MT-ND6 | LDYT/Leigh Disease |
m.14482C>G | MT-ND6 | LHON |
m.14484T>C | MT-ND6 | LHON |
m.14487T>C | MT-ND6 | Dystonia/Leigh Disease/Ataxia |
m.14495A>G | MT-ND6 | LHON |
m.14568C<T | MT-ND6 | LHON |
m.14674T>C | MT-TE | Reversible COX deficiency myopathy |
m.14709T>C | MT-TE | MM+DMDF / Encephalomyopathy |
m.14849T>C | MT-CYB | EXIT / Septo-Optic Dysplasia |
m.15579A>G | MT-CYB | Multisystem Disorder, EXIT |