Multigene Testing for Primary Ciliary Dyskinesia (PCD): Diagnostic Yield and Phenotypic Summary

BACKGROUND
- Primary ciliary dyskinesia (PCD) is a rare genetic condition caused by abnormal ciliary function, evidenced by clinical or postnatal abnormalities.
- Symptoms can include situs inversus or situs ambiguous, respiratory disease with sinusitis and bronchiectasis, chronic otitis media, and male infertility.
- Historically, mutations in DNAI1 and DNAH5 were estimated to account for up to 30% of all cases of PCD, while other known genes accounted for only a small percentage, and the genetic etiology in a large portion of cases remains unknown.
- With the availability of next generation sequencing, simultaneous assessment of genes implicated in PCD, beyond DNAI1 and DNAH5, has become timely and cost effective.
- We sought to determine the contribution of 11 genes to PCD when analyzed concurrently and identify the phenotypic spectrum of disease among those with a genetic diagnosis identified.

METHODS
- DNA samples from 691 individuals with a clinical suspicion of PCD were referred for clinical genetic testing between November 2011 and June 2014 and were analyzed with a PCD multigene sequencing panel that included the following genes: DNAH5, DNAI1, DNAI2, DNAH11, TXNDC3, RSPH4A, DNAH9, DNAAF1, DNAAF2, RPGR, OFD1, and CFTR.
- Due to the high carrier frequency of cystic fibrosis (CF) and phenotypic overlap between PCD and CF, the CFTR gene is included on the panel.
- PCD is recessive condition, and the majority of implicated genes are autosomal.
- However, RPGR and OFD1 are located on the X chromosome, and are also associated with retinitis pigmentosa (RP) and intellectual disability, respectively.
- Clinical information submitted by ordering healthcare providers was reviewed.

MUTATION DISTRIBUTION IN POSITIVE CASES
- Out of the 691 individuals tested, a genetic diagnosis (2 pathogenic mutations in autosomal recessive genes or 1 hemizygous pathogenic mutation in X-linked genes) was provided in 42 individuals (6%).
- Of the 42 positive cases, 57% (n=24) had mutations identified in two genes: DNAH5 (45%, n=19) and DNAI1 (12%, n=5).
- In the remaining 18 positive cases (43%), individuals had mutations in DNAH11 (24%, n=10), RSPH4A (9.5%, n=4), RPGR (5%, n=2), and CFTR (5%, n=2).

CARRIER DISTRIBUTION
- Heterozygous carriers of mutations were identified across all genes except OFD1.
- Forty individuals (6% of total cohort) were found to be heterozygous carriers of mutations in CFTR.
- Fourteen of these carriers were also heterozygous for variants of unknown significance (VUSs) in the same gene, which have the potential to be pathogenic. Additional information, leading to reclassification of the variant, may have clinical importance.
- Many of the VUSs were missense mutations and were not classified as pathogenic due to the limited evidence and literature available for these genes.
- Of note, samples were not analyzed for gross deletions or duplications.

CLINICAL HISTORIES OF POSITIVE CASES
- Clinical histories were provided in 76% (n=32) of the positive cases.
- Of those, 34% (n=11) were reported to have situs inversus or situs ambiguous and these individuals had mutations in DNAH5, DNAH11, or DNAI1.
- Only 9% (n=3) of cases with clinical histories provided reported abnormal electron microscopy (EM) results and also had mutations in DNAH5, DNAH11, or DNAI1.
- Other commonly reported symptoms in positive cases included recurrent or chronic sinusitis, bronchitis, otitis media, and cough.
- The 2 males with RGPR mutations had no reported signs of RP at the time of testing.
- One of the 2 individuals with 2 CFTR mutations reported sweat chloride levels >100 mmol/L.
- Although only 3 genes were implicated in individuals reported to have situs abnormalities or abnormal EM results, these clinical findings were only reported in a small number of individuals (n=11).

TAKE-HOME POINTS
- These results indicate that multigene testing for PCD increased diagnostic yield by nearly 45% compared to testing for DNAH5 and DNAI1 alone.
- These results support a multigene panel approach for PCD, particularly in the absence of situs abnormalities or abnormal EM findings.
- These results also support the inclusion of CFTR on a panel for PCD due to the clinical overlap of symptoms and the diagnosis of CF in 5% of positive cases.

REFERENCES