ATM mutations contribution to hereditary breast-pancreatic cancer

Ora K Gordon¹, Kimberly Childers¹, Rachel McFarland², Holly LaDuca²

¹Providence Health and Services Southern California; ²Ambry Genetics

Background

- Germline mutations in *PALB2*, *BRCA2* and *STK11* are well established as increasing risk of both breast and pancreatic cancer. More recently, *ATM* and *BRCA1* mutations have also been associated with risk, but literature is limited.
- We investigated the prevalence of pathogenic mutations and likely pathogenic variants ("mutations") in *BRCA1/2*, *PALB2*, *STK11* and *ATM*, comparing mutation occurrence in individuals with diagnoses of breast cancer alone to those with both breast and pancreatic cancer primaries.
- Prevalence of CDKN2A (p16) mutations was also evaluated in the breast-pancreatic cohort because of its contribution to hereditary pancreatic cancer.

Methods

- Clinical histories and test results were reviewed for patients undergoing multi-gene panel testing at one clinical laboratory between April 2012 and June 2015. Patients underwent comprehensive analysis of 5-49 genes, depending on the panel ordered.
- The study population was limited to women with breast cancer only (n=27,573) and women with both breast and pancreatic cancer (n=97) without other primaries.
- Demographic and clinical information was provided by clinicians on test requisition forms and pedigrees/clinic notes if provided.
- Gene-specific mutation frequencies were compared between women with breast cancer only and women with breast and pancreatic cancer using Fisher's exact test.

Mutation Frequency Comparisons

Gene	Breast & Pancreatic (n=97)		Breast Only (n=27,573)		p-value	OR	95% CI
	n, positive	n, tested	n, positive	n, tested			
ATM	6	89	209	17570	<0.001	6	2.12, 13.85
BRCA1	2	90	429	26336	0.66	1.37	0.16, 5.14
BRCA2	4	90	442	26336	0.07	2.72	0.72, 7.28
CDKN2A	0	54	13	3965	1	0	0, 24.70
PALB2	1	89	175	17570	0.59	1.13	0.03, 6.54
STK11	0	86	0	16931	1	Inf	0, Inf

Results

- Mutations were identified in *BRCA1*, *BRCA2*, *PALB2* or *ATM* in 13 of the 97 breast pancreatic cancer probands (13.4%) and 1,255 of the 27,573 breast cancer probands (4.6%).
- Of those 13 women with breast and pancreatic cancers who had identified mutations, 11 (85%) had diagnoses of breast cancer over age 50.
- ATM mutations were significantly more likely to be identified in women with breast and pancreatic cancer compared to breast cancer alone.
- BRCA2 mutations were also more frequent among women with breast and pancreatic cancer compared to breast cancer alone, however this was not statistically significant (p=0.07). Prior BRCA1/2 testing in this cohort may have confounded the analysis.
- No CDKN2A or STK11 mutations were identified in the breast plus pancreatic cohort, although this may have been limited by the small number of individuals tested for CDKN2A (n=54). The absence of STK11 mutations is not surprising, as patients with a clinical diagnosis of Peutz-Jeghers syndrome are likely to be referred for single gene analysis of STK11 rather than multigene panel testing.

Conclusions

- This exploratory study substantiates the association of deleterious germline *ATM* mutations with predisposition to both breast and pancreatic cancers.
- These results also suggest that mutations in *ATM* may account for a larger portion of inherited breast and pancreatic cancer kindreds than mutations in other well-described genes.
- A personal history of breast and pancreatic cancer may warrant the expansion of current NCCN testing criteria as a single indicator for germline testing, and that pancreatic screening consortia (CAPS) consider inclusion of *ATM* mutations in screening recommendations.

References

1) National Comprehensive Cancer Network. **Genetic/Familial High-Risk Assessment: Colorectal (Version 1.2016).** https://www.nccn.org/professionals/physician_gls/pdf/genetics_colon.pdf. Accessed September 19, 2016.

Demographics & Clinical Characteristics **Breast & Pancreatic Breast Only Ethnicity** Caucasian 75.3% 17928 65.0% 3.1% 7.3% 2012 African American/Black 5.2% Ashkenazi Jewish 9.3% 1424 4.5% 1229 Asian 3.1% 1642 6.0% Hispanic **Mixed Ethnicity** 1195 4.3% Other 0.0% 1.1% 4.1% 6.7% Unknown 1845 Panel Ordered **BRCAplus** 7.2% 9163 33.2% 20.6% 10508 38.1% BreastNext 43.3% CancerNext 3704 13.4% 555 2.0% 3.1% CancerNext Expanded 2.1% 768 2.8% **GYNplus** 9.9% OvaNext 2724 19.6% **PancNext** 19 0.3% Other Age at Cancer Diagnosis Breast cancer – median 56 years 46 years 63.0% 36.6% Breast under age 50 16953 34 59 63.4% 9962 37.0% Breast age 50+ Pancreatic cancer - median 65 years n/a