# Exploring the Yield of RASopathy Variants in Patients with Hypertrophic Cardiomyopathy



Ambry Genetics®



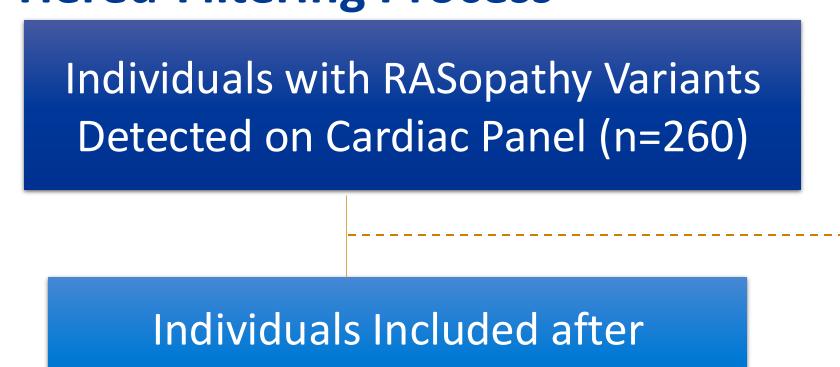
Michelle Malizio<sup>1</sup>, Chelsea Pappas<sup>2,4</sup>, Alyx Vogle<sup>2</sup>, Allison Cirino<sup>1,2</sup>, Brooklynn Gasser<sup>3</sup>, Nadine Channaoui<sup>2</sup>

<sup>1</sup>MGH Institute of Health Professions, <sup>2</sup>Brigham and Women's Hospital, <sup>3</sup>Ambry Genetics, <sup>4</sup>Yale School of Medicine

# Introduction

Hypertrophic Cardiomyopathy (HCM) is the most common inherited cardiomyopathy and is characterized by left ventricular hypertrophy (LVH) without other systemic or acquired causes of LVH. RASopathy conditions that present with LVH are often diagnosed in childhood, yet their phenotypic heterogeneity and attenuation of noticeable physical features can hinder correct diagnosis in adults presumed to have nonsyndromic HCM. Our work aimed to evaluate the prelevance and importance of including RASopathy genes in genetic testing panels for adults with presumed nonsyndromic HCM.

## Methods


#### Data Collection:

- Curated and de-identified individual-level data for adults with a Pathogenic (P), Likely Pathogenic (LP), or Variant of Uncertain Significance (VUS) RASopathy variant detected on cardiac panel testing between January 2016 and August 2024 were provided by a commercial laboratory.
- Panels included an HCM-specific panel, a cardiomyopathy-specific panel, a cardiomyopathy and arrhythmia panel, and a customizable cardiologycentric panel.

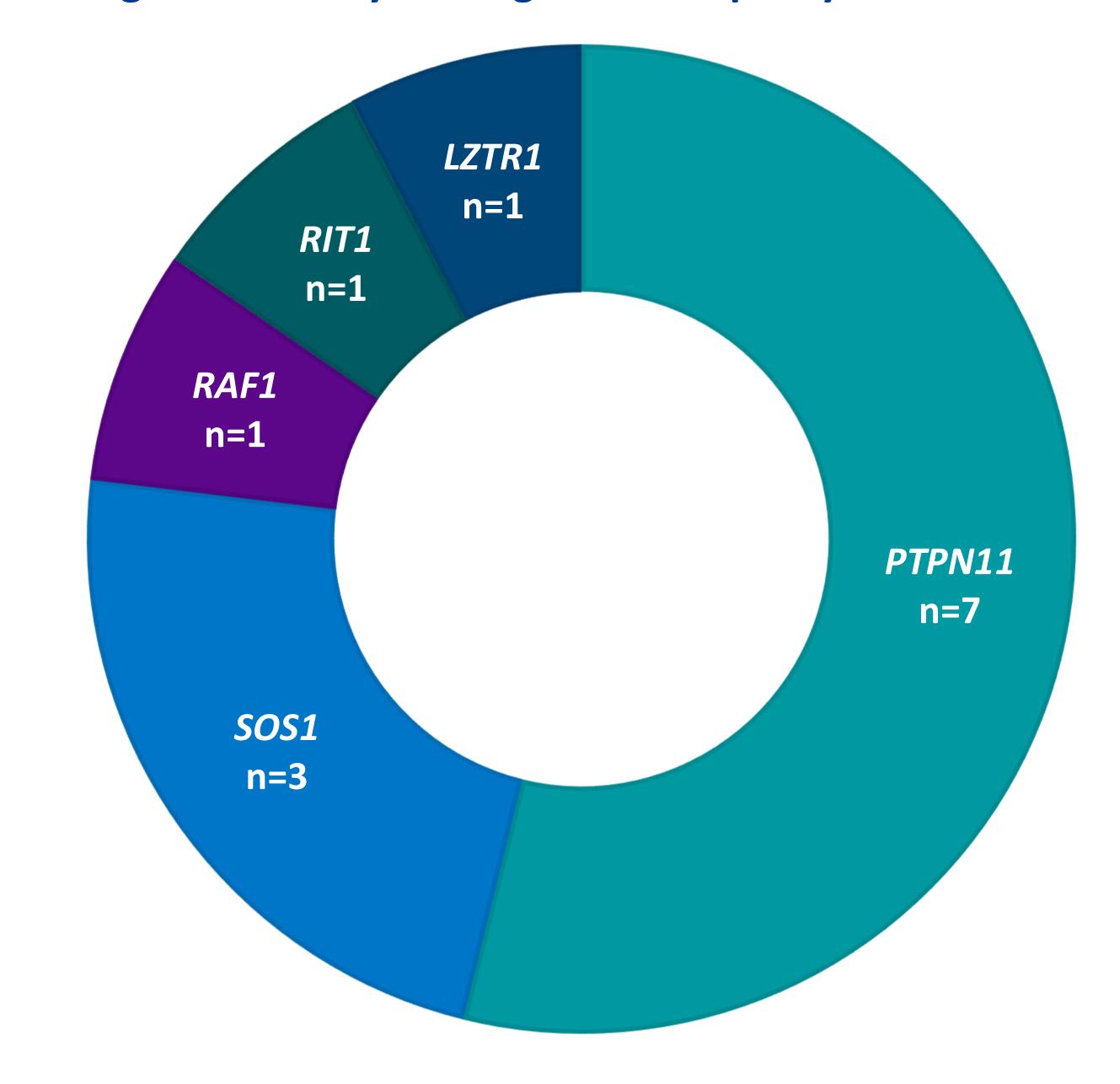
#### Data Analysis:

- A tiered-filtering process was used to obtain a nonsyndromic HCM cohort.
- Data were analyzed using quantitative and descriptive statistics.
- Yield was calculated for total cardiac panels and for the HCM-specific panel.

### FIGURE 1 **Tiered-Filtering Process**



First Tier Filtering (n=119)


Individuals Included after Second Tier Filtering (n=107)

Individuals Excluded (n=141) Individuals without at least one of the following: 1) LVH and or HCM ICD-10 2) LVH and or HCM listed as clinical feature

Individuals Excluded (n=12) 1) LVH ICD-10 code or clinical feature plus non-HCM cardiomyopathy, with no mention of HCM (n=9) 2) Clinical features reflective of syndromic presentation (n=3)

## Results

FIGURE 2 Pathogenic & Likely Pathogenic RASopathy Variant Distribution



- •Thirteen total P/LP variants were detected.
- •Most were detected in *PTPN11*, followed by *SOS1*.

 
 TABLE 1
 **Gene-Specific RASopathy Test Orders and Variant Counts** 

| Gene   | Total # of Test Orders | # of P/LP Identified | # of VUS Identified |
|--------|------------------------|----------------------|---------------------|
| PTPN11 | 14,028                 | 7                    | 11                  |
| RAF1   | 14,051                 | 1                    | 30                  |
| SOS1   | 4,512                  | 3                    | 31                  |
| RIT1   | 4,512                  | 1                    | 4                   |
| LZTR1  | 679                    | 1                    | 0                   |
| NF1    | 661                    | 0                    | 1                   |
| SPRED1 | 664                    | 0                    | 1                   |

- Zero variants (P/LP/VUS) were detected in the following genes: HRAS, SOS2, SHOC2, BRAF MAP2K1, MAP2K2, RASA1, and CBL.
- Dataset had no test orders that analyzed PPP1CB, NRAS, or KRAS.
- SOS1 was the gene with the highest number of reported VUS findings.

## TABLE 2 Pathogenic & Likely Pathogenic RASopathy Variant Yield

| Test Ordered               | Yield of P/LP RASopathy Variants (%) |  |
|----------------------------|--------------------------------------|--|
| Total (all cardiac panels) | 13/14,097 (0.092%)                   |  |
| HCM-specific Only          | 10/3,743 (0.267%)                    |  |

 Most RASopathy variants were detected on the HCMspecific panel.

## Discussion

- Small overall yield of 0.092% (total tests) and 0.267% (HCM-specific)
- -RASopathy gene analysis may have limited utility on HCM genetic testing panels for presumed nonsyndromic adult population.
- -However, most nonsyndromic HCM genes also have a small yield (<5%).
- Yield is only one of many factors that contribute to panel inclusion.
- Most RASopathy gene had zero detected variants.
- Most genes with P/LP variants detected are already included on HCM guidelines.
- -HCM in most RASopathy genes may be limited to childhood onset with multisystemic features.
- -RASopathies are phenotypically heterogeneous.
- SOS1 harbored the second-highest number of P/LP variants detected, despite being analyzed in only one-third the number of tests as PTPN11 and RAF1.
  - -Growing evidence between RASopathy-associated HCM and SOS1.
  - -Comparable to *PTPN11*, which has been discussed in clinical guidance.
- SOS1 was the gene with highest number of reported VUS findings.
- Based on our findings, further consideration about which RASopathy genes are beneficial to include on HCM panels, specifically regarding SOS1, is warranted.

## References

 Please scan the QR code to view references:

