

The limits of Mendelian assumptions in genomic diagnostics:

evidence from long-read whole genome sequencing and exome analysis

Erica D Smith¹ (esmith@ambrygen.com), Greta Pitsava², Krista Bluske¹, Changrui Xiao², Rebekah Barrick², Ivan De Dios², Kirsten Blanco², Elizabeth Chao², Kelly Radtke¹, Eric Vilain², Emmanuèle C. Délot², Seth Berger¹, Rachid Karam¹

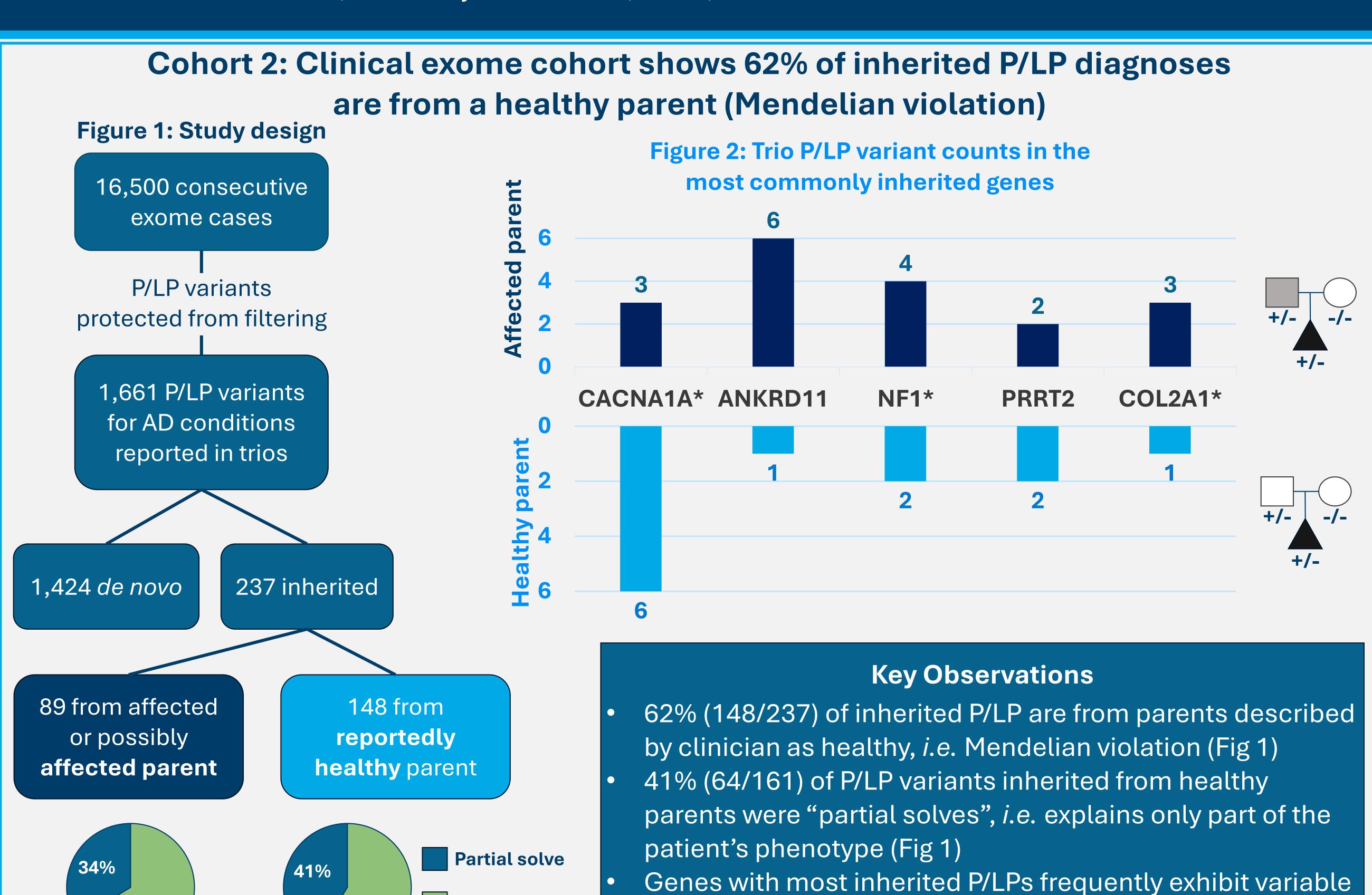
Ambry Genetics, 1 Enterprise, Aliso Viejo, CA; ²Institute for Clinical and Translational Science, University of California, Irvine, CA

Background

- Diagnostic analysis of rare disease using exomes or genomes has historically relied on **assumptions of Mendelian inheritance** to reduce the number of variants for manual review
- Family-based inheritance filtering may eliminate low-penetrance, autosomal dominant diagnostic variants when parents are reportedly unaffected

AIM: To quantify how often diagnostic variants violate Mendelian patterns

Methods


- Cohort 1: Research whole genome sequencing (WGS) analyses. Specimens from patients with rare diseases were gathered as part of the GREGoR consortium. Short read WGS (srWGS) was analyzed using standard Mendelian filtering settings. Thorough manual analysis of long read WGS (lrWGS) was performed using GeneYX without pre-set filters based on Mendelian assumptions.
- Cohort 2: Diagnostic exome sequencing was performed at Ambry Genetics using a proprietary analysis platform; *Pathogenic and Likely Pathogenic variants are protected from filtering* and are reported if the patient phenotype matches. The inheritance of reported Pathogenic (P) or Likely Pathogenic (LP) variants for Autosomal Dominant (AD) conditions was examined in exome trios.

Cohort 1: Candidate diagnoses in 12% (3/25) of lrWGS cases violate Mendelian assumptions

Case	Gene (c.; p.)	Inheritance	Condition	Alleles in gnomAD	Evidence
	PPP2R5D (c.589G>C; p.Glu197Gln)	Healthy father	Developmental and epileptic encephalopathy	0	2 P/LP variants at same aa, missense constraint
2	FGF8* (c.356C>T; p.Thr119Met)	Healthy father	Holoprosencephaly	2	Founder variant for holoprosencephaly PMID: 29584859
3	GIGYF1* (c.332del; p.Leu111fs)	de novo	Autism Spectrum disorder	74	Recurrent <i>de novo</i> , functional evidence PMID: 35917186

Table 1: 25 cases were negative after srWGS. 6 candidate findings were identified on lrWGS, 3 of which were also detected on srWGS but were deprioritized during analysis due to being inconsistent with inheritance pattern.

(*) Incomplete penetrance and/or variable expressivity

Take Home Points

expressivity and/or incomplete penetrance(*) (Fig 2)

50% (3/6) of candidate findings identified in 25 cases by IrWGS were also detected but filtered on srWGS because they **do not follow Mendelian patterns** (Table 1)

Full diagnosis

- Reported parental affected status is not reliable for **family-inheritance based variant filtering**, even for the full diagnosis (Figure 1).
- Case-level analysis of exome or genome sequencing should account for **gene-disease specific variable expressivity and penetrance** to optimize diagnoses (Figure 2)