Updates from the International NF-SWN Genes Variant Curation Expert Panel (VCEP) to Improve Genetic Testing of Neurofibromatosis and Schwannomatosis Shoji Ichikawa¹*, Elisabeth Castellanos^{2,3}*, Alicia Gomes⁴, D Gareth Evans⁵, Miriam J Smith⁵, Hilde Brems⁶, Douglas R Stewart⁷, Deeann Wallis⁴, Scott R Plotkin⁸ on behalf of the NF-SWN Genes VCEP ¹Ambry Genetics, Aliso Viejo, CA, USA; ²Clinical Genomics Research Group, Germans Trias & Pujol Research Institute (IGTP), Can Ruti Campus, Badalona, Barcelona, Spain; ³Genetics Service, Clinical Laboratory North Metropolitan (LCMN), Germans Trias & Pujol University Hospital (HUGTiP), Can Ruti Campus, Badalona, Barcelona, Spain; ⁴Department of Genetics, University of Alabama at Birmingham, AL, USA; ⁵Genomic Medicine, University of Manchester, Manchester, UK; ⁶Department of Human Genetics, KU Leuven, Leuven, Belgium; ⁷Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA; ⁸Department of Neurology and Cancer Center, Massachusetts General Hospital, Boston, MA, USA (*These authors contributed equally) ### BACKGROUND Neurofibromatosis type 1 (NF1); *NF2-*, *SMARCB1-*, and *LZTR1-*related schwannomatosis (SWN); and Legius syndrome (LGSS) require a genetic diagnosis (1) to confirm clinical suspicion in patients with indeterminate phenotype, (2) to better understand a patient's prognosis and (3) for family planning. Variant interpretation and classification of the five genes causing these disorders (*NF1*, *NF2*, *SMARCB1*, *LZTR1*, and *SPRED1*) is challenging due to the broad mutational spectrum, the paucity of clear mutational "hotspots", and the high proportion of non-coding and splicing variants. Many of the patients do not have a family history due to high *de novo* and mosaicism rate and/or variable penetrance and expressivity and do not meet diagnostic criteria in the early stages of these disorders. These patients would benefit from an accurate genetic test for clinical use and follow-up. #### **METHODS** Thirty-seven individuals from North and South America, Australia, and Europe with expertise in NF1, LGSS, and SWN (or other related hereditary tumor predisposition pathologies) or from high-volume diagnostic laboratories (academic and commercial) volunteered to develop ACMG/AMP variant interpretation rules specific for NF-SWN genes as members of a Variant Curation Expert Panel (VCEP) in the framework of the NIH-funded ClinGen Hereditary Cancer Clinical Domain Working Group. This panel of experts includes clinical and molecular geneticists, variant scientists, genetic counselors, epidemiologists, neurosurgeons, and others who regularly participate in the diagnosis and/or clinical management of this group of disorders. | | | Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology Sue Richards, PhD¹, Nazneen Aziz, PhD².¹6, Sherri Bale, PhD³, David Bick, MD⁴, Soma Das, PhD⁵, Julie Gastier-Foster, PhD⁶.7.³8, Wayne W. Grody, MD, PhD⁰.1.¹1, Madhuri Hegde, PhD¹², Elaine Lyon, PhD¹³, Elaine Spector, PhD¹⁴, Karl Voelkerding, MD¹³ and Heidi L. Rehm, PhD¹⁵; on behalf of the ACMG Laboratory Quality Assurance Committee | | | | | |---|--|--|--|---|---|---| | | | | | | | | | | Ben | ilgn | Pathogenic | | | | | | Strong | Supporting | Supporting | Moderate | Strong | Very str | | Population data | MAF is too high for
disorder BA1/BS1 OR
observation in controls
inconsistent with
disease penetrance BS2 | | | Absent in population databases PM2 | Prevalence in
affecteds statistically
increased over
controls PS4 | | | Computational
and predictive
data | | Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Silent variant with non predicted splice impact BP7 In-frame indels in repeat w/out known function BP3 | Multiple lines of
computational
evidence support a
deleterious effect
on the gene /gene
product PP3 | Novel missense change
at an amino acid residue
where a different
pathogenic missense
change has been seen
before PM5
Protein length changing
variant PM4 | Same amino acid
change as an
established
pathogenic variant
PS1 | Predicted r
variant in a
where LOF
known
mechanism
disease
PVS1 | | Functional
data | Well-established
functional studies show
no deleterious effect
BS3 | | Missense in gene with
low rate of benign
missense variants and
path. missenses
common PP2 | Mutational hot spot
or well-studied
functional domain
without benign
variation PM1 | Well-established
functional studies
show a deleterious
effect PS3 | | | Segregation
data | Nonsegregation with disease BS4 | | Cosegregation with disease in multiple affected family members PP1 | Increased segregation data | → | | | De novo
data | | | | De novo (without paternity & maternity confirmed) PM6 | De novo (paternity and
maternity confirmed)
PS2 | | | Allelic data | | Observed in <i>trans</i> with a dominant variant BP2 Observed in <i>ds</i> with a pathogenic variant BP2 | | For recessive
disorders, detected
in trans with a
pathogenic variant
PM3 | | | | Other
database | | Reputable source w/out
shared data = benign BP6 | Reputable source
= pathogenic PP5 | | | | | Other data | | Found in case with
an alternate cause
BP5 | Patient's phenotype or
FH highly specific for
gene PP4 | | | | ### **RESULTS** The NF-SWN Genes VCEP is comprised of five sub-VCEPs that will address causative genes associated with NF1 (*NF1*), LGSS (*SPRED1*), and SWN (*NF2*, *SMARCB1*, and *LZTR1*). For each disorder, a sub-VCEP has been organized into three working groups (functional, phenotypic, and computational) to review and modify, if required, the 26 general ACMG/AMP rules to establish specific criteria for each gene. The NF-SWN Genes VCEP has successfully developed the first version of *NF1* and *SPRED1* ACMG/AMP guidelines and is close to completing the pilot study of *NF1* rules. A pilot study of *SPRED1* rules has begun recently. Furthermore, the establishment of SWN rules is underway, in conjunction with the analysis of *NF2*, *SMARCB1*, and *LZTR1* gene codes. ## **MODIFICATION EXAMPLES** 1. Apply the scaled point system to the ACMG/AMP variant classification guidelines 2. Integrate scaled point system to certain criteria, such as PS4 (prevalence in affected individuals over controls) PS4 The prevalence of the variant in affected individuals is significantly increased compared with the prevalence in controls Note 1: Relative risk or OR, as obtained from case—control studies, is >5.0, and the confidence interval around the estimate of relative risk or OR does not include 1.0. See the article for detailed guidance. Note 2: In instances of very rare variants where case—control studies may not reach statistical significance, the prior observation of the variant in multiple unrelated patients with the same phenotype, and its absence in For the *NF1* gene, evidence strength is categorized into 4 levels, - ranging from supporting (1-1.5 points), moderate (2-3.5 points), strong (4-15.5 points), to very strong (>=16 points), based on sum points accumulated from unrelated probands. - Apply 0.5 points to each proband with a moderately-specific phenotype, and 1 point to each proband with a highly-specific phenotype. - If an individual is noted to meet NIH criteria in publication without phenotypic features provided, full points should be applied. - If an individual is noted to meet NIH criteria in internal data without phenotypic features provided, half points should be applied. - Do not apply PS4 at any strength if BA1 orBS1 is met. controls, may be used as moderate level of evidence. ## **TAKE HOME POINTS** - The NF-SWN Genes VCEP has been established with the objective of refining specific ACMG/AMP rules for use in curating NF-SWN gene variants - The primary aim of this initiative is to develop a compendium of NF-SWN gene-specific ACMG/AMP evidence rules - The eventual goal of this endeavor is to ensure more accurate variant interpretations for clinical use in the context of NF and SWN patients. #### **FUNDING** National Library of Medicine National Center for Biotechnology Information Contract Award ID: 2021-04-008 Contract Award ID: 1U24NS131158-01