Large-scale integration of functional assay data for the resolution of germline *BRCA1* and *BRCA2* variants of uncertain significance

Paulo C. M. Lyra, Jr.¹, Lucas Dalcolmo¹, Michael Parsons², Samuel Brito¹, Thales C. Nepomuceno¹, Nam Phuong Nguyen¹, Marcy E. Richardson³, Geise de Oliveira⁴, Joao da Silva⁴, Laura Caleca⁵, Chunling Hu⁶, Maria Rossing⁷, Aditi Hazra⁸, Alexandra Martins⁹, Sandrine Caputo¹⁰, Gael Millot¹¹, Joanne NgeowYuen Yie¹², Marcelo A. Carvalho¹³, Melissa Cline¹⁴, Paulo Radice¹⁵, Rachel Carlsen¹⁶, Romy Mesman¹⁷, Valentina Zampiga¹⁸, Vijay Joseph¹⁹, Shyam Sharan²⁰, Maaike Vreeswijk¹⁷, Amanda Spurdle², Fergus J. Couch⁶, Alvaro N.A. Monteiro¹, on behalf of the ENIGMA Consortium

¹Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA

²QIMR, Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia

³Ambry Genetics, Aliso Viejo, CA, USA

⁴Centro Universitario FAEMA, Ariquemes, Rondonia, Brazil

⁵Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Lombardia, IT

⁶Mayo Clinic, Rochester, MN, USA

⁷Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

⁸Harvard University, Boston, MA, USA

⁹Université de Rouen, Rouen, France

¹⁰Institut Curie, Paris, France

¹¹Institut Pasteur, Université Paris Cité F-75015 Paris, France

¹²National Cancer Centre Singapore, Singapore, Malasia

¹³Divisão de Pesquisa Clínica, Instituto Nacional de Câncer. Rio de Janeiro 20230-130. Brazil

¹⁴University of California, Santa Cruz Genomic Institute, Santa Cruz, CA, USA

¹⁵Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy

¹⁶Quest Diagnostics, New Jersey, USA

¹⁷Leiden University Medical Center, Leiden, Netherlands

¹⁸Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Roma, Italy

¹⁹Memorial Sloan Kettering Cancer Center, New York, New York, USA

²⁰Center for Cancer Research, National Cancer Institute, Frederick, MD, USA

Carriers of BRCA1 and BRCA2 pathogenic variants are at a significantly elevated risk for breast, ovarian, prostate, and pancreatic cancer. Mainstream germline genetic testing has led to a significant increase in the detection of variants of uncertain clinical significance (VUS) in these genes, the vast majority of which are missense variants. VUS are a significant barrier for the identification of individuals at risk. Here, we collate data for BRCA1 and BRCA2 missense variants from 187 and 149 individual instances of functional assays, respectively, including large multiplex assays of variant effects (MAVEs) and integrate data from validated assays to assess their pathogenicity. We have curated and harmonized functional data for 3,246 BRCA1 missense variants and 6,208 BRCA2 missense variants representing 26 % and 30.1% of possible missense variants caused by single nucleotide changes in BRCA1 and BRCA2, respectively. Results were harmonized across studies by converting data into ordinal categorical variables (0, benign; 1, intermediate; 2, pathogenic). We used a panel of 529 known reference missense variants to determine the sensitivity, specificity, and ACMG/AMP odds of pathogenicity of every assay. Variants were assigned ACMG/AMP criteria based on the level of evidence. We then applied ACMG/AMP variant interpretation guidelines to assign evidence criteria for classification. For BRCA1, integration of data from validated assays led to ACMG/AMP concordant evidence criteria in favor of pathogenicity for 344 variants or against pathogenicity for 2,122 representing 76% of current VUS functionally assessed. For BRCA2 evidence criteria in favor of pathogenicity was assigned to 425 variants or against pathogenicity for 4488 representing 79% of current VUS functionally assessed. In addition to making available harmonized high quality functional data for BRCA1 and BRCA2 missense variants to aid in classification, this resource can also support a data-driven refinement of classification rules.