

Characterization of RPS20-related colorectal cancer predisposition: a case series from a multigene panel testing cohort Jennifer Herrera-Mullar, Ashley PL Marsh, Cassidy Carraway, Felicia Hernandez, Emily Kudalkar, Marcy Richardson

BACKGROUND

Current established genes associated with early-onset hereditary colorectal cancer (CRC) explain less than 20% of hereditary CRC.

RPS20 was first implicated as a candidate gene for hereditary CRC in 2014, but only 5 families have been published in the literature.

The Clinical Genome Consortium considers the RPS20-related CRC gene-disease relationship (GDR) as Limited, meaning no variants can be classified as likely pathogenic of pathogenic (LP/P).

METHODS

Retrospective review of ~950,000 multigene panel testing (MGPT) orders for diverse cancer indications

Individuals with putative loss-of-function variants (pLOF) in RPS20 underwent comprehensive phenotype curation

ICD10 codes used for comparative analysis of CRC prevalence in RPS20 cohort (n=36) and a Lynch syndrome cohort (n=11,437) versus a wildtype (WT) cohort

RPS20 is not currently included in ASCO guidelines for hereditary cancer testing and is listed in the NCCN guidelines as having only limited evidence for CRC predisposition.

(MGPT-negative, 36-85 genes; n=384,445) using Fisher's exact test

Age at diagnosis plotted for RPS20 and Lynch syndrome genes (MLH1, MSH2, MSH6 and PMS2) using Kaplan-Meier

FIGURE 1A. Phenotypes in 36 individuals heterozygous for pLOF in RPS20

	Variant	CRC	Years Old					Polyps	FDR CRC
	(NM_001023.3)	(MMR)	20	30	40	50	60	70 (#)	(#)
P1	p.M1?	0		/				NP	Y (1)
P2	p.M1?	1 (pMMR)						NP	N
P3	p.M1?	2				2		NP	Y (1)
P4	p.K4*	0						NP	N
P5	p.K4*	1 (dMMR) [‡]						NP	Y (2)
P6	p.G7*	2 (pMMR)			2			NP	N
P7 [†]	p.T9Nfs*16	1						NP	N
P8	p.V11Gfs*27	1						NP	Y (1)
P9	p.N28Tfs*2	0		$ \rightarrow $				NP	Y (1)
P10	p.A37*	1						NP	N
P11	p.R41Kfs*10	0						NP	N
P12	p.R41Kfs*10	0						NP	N
P13	p.K46Sfs*25	0						NP	N
P14	p.L48Qfs*24	1						> Y (4)	N
P15	p.K51*	1 (pMMR)						N	Y (1)
P16	p.R55*	0						Y (50-100)	Y (3)
P17	p.K59*	1						NP	Y (1)
P18	p.L61Ffs*12	1						NP	Ν

FIGURE 1B. Forest plot comparing prevalence of CRC in individuals with pLOF in RPS20 and LP/P in Lynch syndrome genes (MLH1, MSH2, MSH6, and PMS2) compared to a similarly ascertained WT MGPT cohort

PMS2

FIGURE 1C. Kaplan-Meier plot showing comparison of age of diagnosis among MLH1, MSH2, MSH6, PMS2, and RPS20 cohorts

RESULTS

- 28 unique *RPS20* pLOF detected in 36 individuals (overall cohort frequency of 0.004%)
- Median age of CRC diagnosis in *RPS20* cohort was 48.25 years
- 16.7% (6/36) individuals reported multiple primary CRC diagnoses

Majority of CRC tumors pMMR (71.4%; 10/14)

TAKE HOME POINTS

- Comparison of CRC prevalence showed a statistically significant two-fold enrichment compared to an *MLH1*-related Lynch syndrome (LS) cohort.
- These data elevate the GDR score from Limited to Moderate for RPS20-related CRC predisposition, allowing for classification of variants as LP/P.
- Management of CRC risk in RPS20 heterozygotes may mirror MLH1-related LS, with attention given to the potential risk of multiple primary CRCs.

• Signet ring cell CRC in 11.1% (4/36)

CRC more prevalent in RPS20 cohort than the MLH1

cohort (OR 45.3 versus OR 16.9) compared to WT

Fernández Aceñero MJ, et al. Hereditary Gastrointestinal Tumor Syndromes: When Risk Comes with Your Genes. Curr Issues Mol Biol. 2024 Jun 26;46(7):6440-6471. doi: 10.3390/cimb46070385. Richards S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015 May;17(5):405-24. doi: 10.1038/gim.2015.30. 3. The Clinical Genome Resource. RPS20 gene-disease validity. Available at: https://search.clinicalgenome.org/kb/genes/HGNC:10405. [Accessed Nov 7 2024]. 4. Tung N, et al. Selection of Germline Genetic Testing Panels in Patients With Cancer: ASCO Guideline. J Clin Oncol. 2024 Jul 20;42(21):2599-2615. doi: 10.1200/JCO.24.00662. Hodan, R et al. (2024). Genetic/Familial High-Risk Assessment: Colorectal, Endometrial, and Gastric, Version 3.2024, NCCN Clinical Practice Guidelines In Oncology. Journal of the National Comprehensive Cancer Network, 22(10), 695-711. Retrieved Jan 29, 2025, from https://doi.org/10.6004/jnccn.2024.0061.