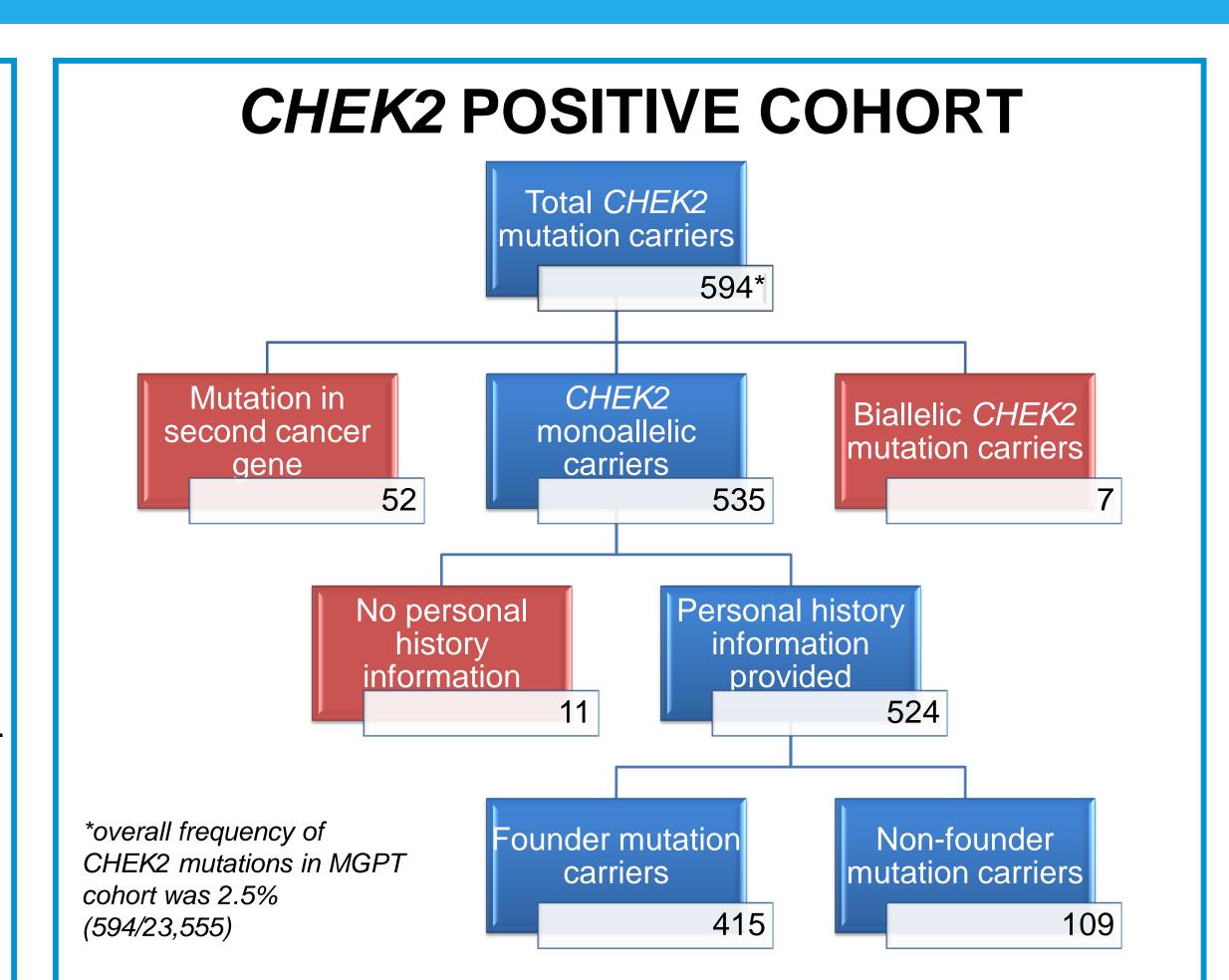
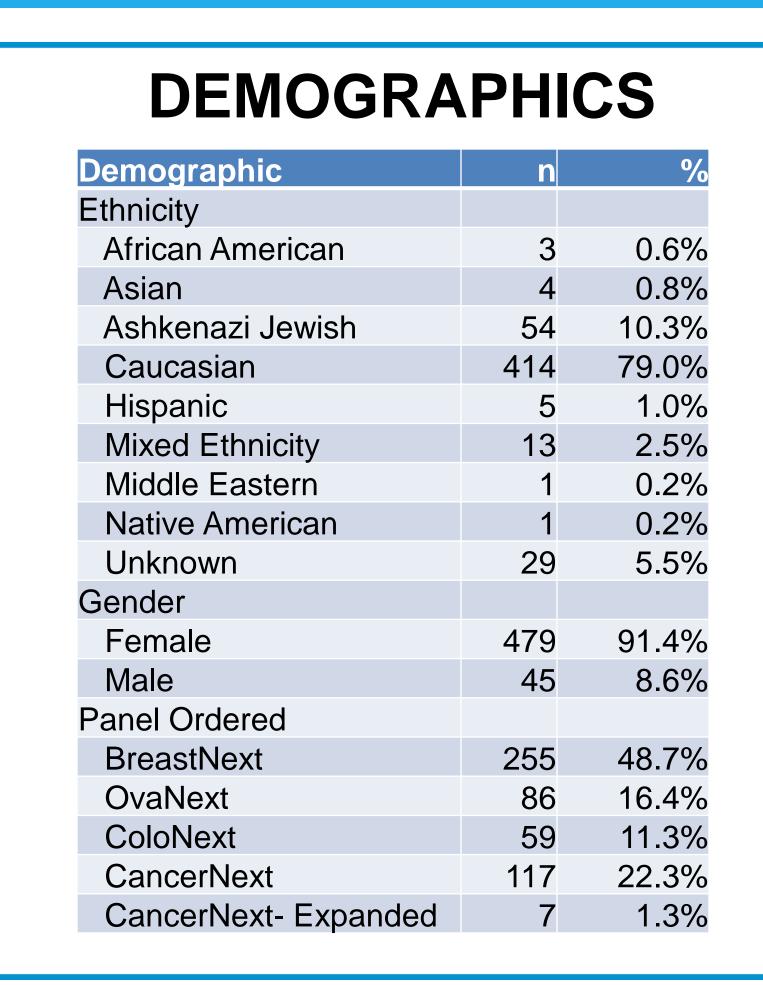
Phenotype Comparison Between Founder and Non-Founder CHEK2 Mutation Carriers

Tracey Leedom,¹ Holly LaDuca,¹ Rachel McFarland,¹ Shuwei Li,¹ Elizabeth Chao^{1,2}

¹Ambry Genetics, Aliso Viejo, CA, 92656


²Department of Pediatrics, University of California, Irvine, CA, 92697


BACKGROUND

- Mutations in the CHEK2 gene confer an increased risk of developing multiple types of cancers, including, breast, colon, prostate, thyroid, ovarian, and kidney. 1-3 Increased risks of male breast cancer have also been reported.4
- Several founder mutations in CHEK2 have been identified in individuals of Eastern European and Ashkenazi Jewish ancestries. 1,5-7
- The purpose of this study was to assess the phenotypes and molecular characteristics of CHEK2 mutation carriers in a multi-gene cancer panel cohort, with a focus on comparing phenotypes of founder and non-founder mutation carriers.

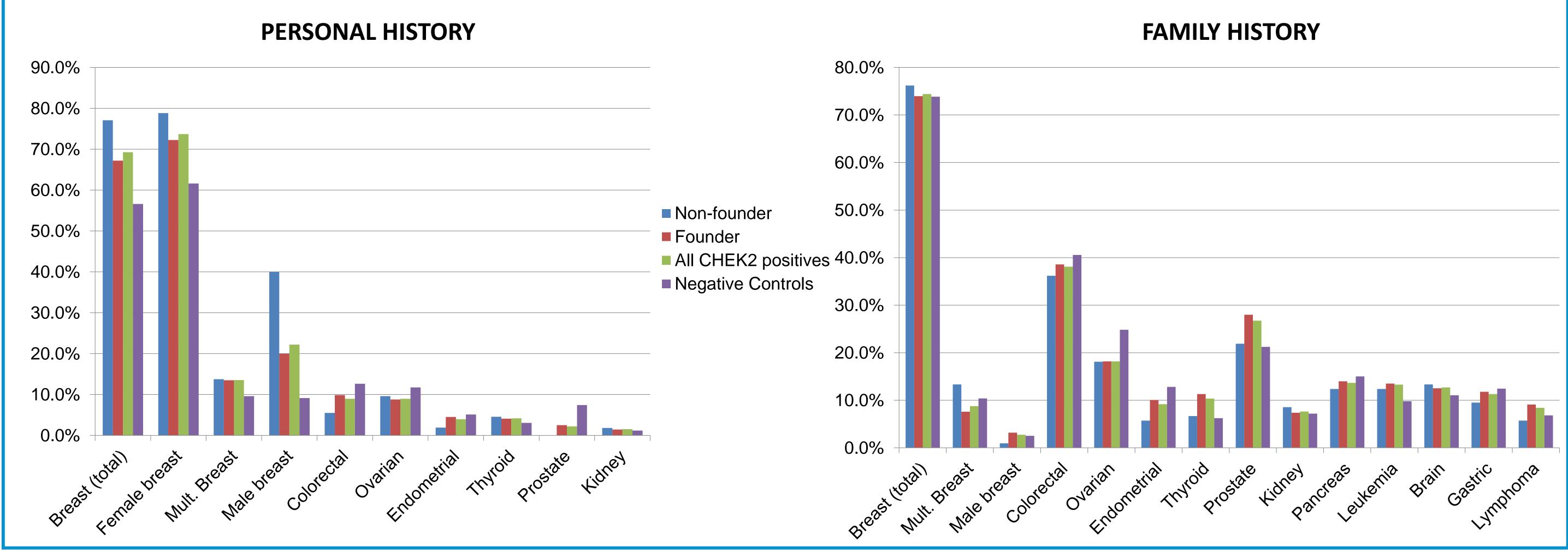
METHODS

- Reviewed personal and family cancer history of individuals with CHEK2 pathogenic mutations or likely pathogenic variants ('mutations') reported on multi-gene panel testing (MGPT) from March 2012-December 2014
- Excluded individuals with additional mutations in non-CHEK2 genes, biallelic CHEK2 mutations, or no personal or family history information provided
- Excluded family members negative for the familial CHEK2 mutation
- Compared clinical histories of CHEK2 founder mutation carriers (c.1100delC, p.I157T, p.S428F, EX8_9del, and c.444+1G>A) to non-founder mutation carriers
- Compared clinical histories of CHEK2 mutation carriers to MGPTnegative controls (n=8,315) reported on multi-gene panel testing from March 2012-June 2014
- Statistical analyses performed using Fisher's exact test and multivariate testing, controlling for age at testing, type of multigene panel ordered, ethnicity, and gender

RESULTS

Non-founders vs. Founders

No significant differences were observed between clinical histories of founder and non-founder CHEK2 mutation carriers.


All CHEK2 positives vs. MGPT negatives

		Fisher's exact		
	OR	P-value	95% CI	P-value
Phx breast (total)	1.728	1.0e-8	[1.423,2.104]	1.4e-6
Phx female breast	1.744	7.5e-8	[1.411,2.167]	1.1e-5
Phx male breast	1.472	5.0e-3	[1.118,1.917]	4.4e-3
Phx mult. breast	2.840	9.0e-3	[1.202,6.176]	1.2e-2
Fhx prostate	1.355	4.0e-3	[1.098,1.665]	6.3e-3
Fhx ovarian	0.671	5.4e-4	[0.527,0.848]	6.2e-3
Fhx leukemia	1.412	1.5e-2	[1.066,1.848]	3.0e-2
Fhx thyroid	1.739	5.6e-4	[1.264,2.353]	3.2e-4

- CHEK2 mutation carriers were significantly more likely to have a personal history of breast cancer (both male and female) and a history of multiple primary breast cancers (phx mult. breast) than MGPT negative controls.
- CHEK2 mutation carriers were significantly more likely to have a family history of prostate cancer, leukemia, and thyroid cancer than MGPTnegative controls, and were less likely to have a family history of ovarian cancer.

CHEK2 MUTATION SPECTRUM FOUNDER MUTATION CARRIERS NON-FOUNDER MUTATION CARRIERS (N=109)(N=415)■ p.T476M (c.1427C>T) ■ p.R117G (c.349A>G) ■ c.1263delT 10.4% 23.8% ■ p.R145W (c.433C>T) **c.1100delC** 33.0% p.R95* (c.283C>T) ■ p.I157T (c.470T>C) **p.**H371Y (c.1111C>T) ■ p.Y390S (c.1169A>C) 1.8% p.S428F (c.1283C>T) c.591delA 1.8% 1.8% c.908+1G>A 2.8% EX8_9del (aka EX9_10del) 30.1% **c.1368dupA** 2.8% c.1462-2A>G 2.8% c.444+1G>A EX3 4del single/non-recurrent mutations

CLINICAL HISTORIES OF CHEK2 MUTATION CARRIERS AND MGPT-NEGATIVE CONTROLS

TAKE-HOME POINTS

- No significant differences were observed between clinical histories of CHEK2 founder and non-founder carriers, suggesting that cancer risks reported in CHEK2 founder populations may be generalizable to all CHEK2 mutation carriers
- All CHEK2 carriers were more likely to have a personal history of breast cancer (female, male, and multiple primary breast) than noncarriers, consistent with previous reports.
- The fact that no significant differences were observed between CHEK2 carriers and non-carriers for other CHEK2-associated cancers (i.e. colorectal, prostate, thyroid, and kidney) is likely due to a selection bias of the MGPT cohort toward breast indications, as there were relatively lower numbers of these cancers reported compared with breast cancer.

REFERENCES

- Cybulski C et al. Am J Hum Genet. 2004;75:1131-1135
- 2. Xiang HP et al. Eur J Cancer. 2011 Nov;47(17):2546-51
- Walsh T et al. *PNAS*. 2011;108(44):10832-37
- Wasielewski M et al. Breast Cancer Res Treat. 2009 Jul;116(2):397-400
- Cvbulski C et al. *J Med Genet*. 2006;43:863-866 Walsh T et al. *JAMA*. 2006 Mar 22;295(12):1379-88
- Shaag A et al. *Hum Mol Genet*. 2005 Feb 15;14(4):555-63

15 Argonaut, Aliso Viejo, CA 92656