De novo recurrent variants in U2AF2 RNA-binding domains in an intellectual disability syndrome.

Dong Li¹, Daniëlle G.M. Bosch², Elizabeth J. Bhoj¹, Mar Costa-Roger³, Maji Debanjana⁴, Qin Wang¹, Leslie Granger⁵, Andrea Petersen⁵, Carrie Hammond⁶, Michael Parker⁶, Michael E. March¹, Mark R. Battig¹, Hanna Faghfoury⁷, L. Kristin Parsley⁸, Emanuele Agolini⁹, Maria Lisa Dentici⁹, Meredith Wright¹⁰, Rachel Palmquist¹¹, Khanh Lai¹¹, Marcello Scala^{12,13}, Alice Brooks¹⁴, Michele Iacomino¹³, Federico Zara^{12,13}, Meghan Towne¹⁵, Kirsty McWalter¹⁶, Raymond Louie¹⁷, Michael Lyons¹⁷, Miroslava Hancarova¹⁸, Zdenek Sedlacek¹⁸, Gemma Aznar-Laín¹⁹, Martin Schwarz¹⁸, Timothy J. Maarup²⁰, Tugce B. Balci²¹, Carlo Marcelis²², Bert B.A. de Vries²², Jozef Gecz²³, Elaine H. Zackai¹, Yuanquan Song¹, Gijs van Haaften², Clara Kielkopf⁴, Luis A. Pérez-Jurado^{3,19,23}, Hakon Hakonarson¹

¹Children's Hospital of Philadelphia; ²University Medical Center Utrecht; ³Universitat Pompeu Fabra; ⁴University of Rochester School of Medicine; ⁵Randall Children's Hospital; ⁶Sheffield Children's NHS Foundation Trust; ⁷University of Toronto; ⁸University of Illinois College of Medicine; ⁹Bambino Gesù Children's Hospital; ¹⁰Rady Children's Institute for Genomic Medicine; ¹¹University of Utah; ¹²University of Genoa; ¹³IRCCS Istituto Giannina Gaslini; ¹⁴Erasmus Medical Center; ¹⁵Ambry Genetics; ¹⁶GeneDx; ¹⁷Greenwood Genetic Center; ¹⁸ Charles University Prague; ¹⁹Hospital del Mar Research Institute; ²⁰Kaiser Permanente; ²¹Western University, London Health Sciences Centre; ²²Radboud University Medical Centre; ²³University of Adelaide

Several evolutionarily conserved *cis*-acting sequences on pre-mRNA facilitate the recognition of exon-intron boundaries and identify the 3' splice site (SS) during the spliceosome assembly. In this complex, U2AF1 recognizes the conserved AG dinucleotides preceding the 3'SS, and concurrently C-terminal RNA binding domains (RBDs) of U2 auxiliary factor subunit 2 (U2AF2) bind to the sequential polypyrimidine tract, adjacent to the AG dinucleotides at the 3'SS. These early steps ensure the high fidelity of splicing, which is vitally important because mistakes in splicing could result in unintended effects leading to dysregulation of abundance of different gene isoforms expression and/or frameshift mutations. By exome sequencing and international matchmaking we identified 20 unrelated individuals with nine different de novo novel missense variants in the RBDs of U2AF2. Four out of the nine variants were recurrent in RNA binding motif 1 (RRM1), where most variants reside, and were found in 15 individuals [c.445C>T (p.Arg149Trp), c.448C>T (p.Arg150Cys), c.449G>A (p.Arg150His), c.556G>A (p.Val186Met)], representing mutation hotspots of U2AF2. All of the identified variants reside in the highly intolerant regions. Detailed clinical assessment of the affected individuals showed that they present with developmental delay (DD) or intellectual disability (ID) (20/20), febrile seizures (8/13), hypoplastic or agenesis of corpus callosum (5/12), and similar craniofacial dysmorphology. Mapping of the mutations on the three-dimensional structures of RBDs of U2AF2 predicted that six of the identified variants are likely to alter splice site RNA binding affinity and/or specificity, including the three recurrent ones - c.445C>T (p.Arg149Trp), c.448C>T (p.Arg150Cys), and c.449G>A (p.Arg150His), whereas three mutations, including the recurrent variant c.556G>A (p.Val186Met), could affect the stability of the protein, which we currently are validating experimentally. Preliminary transcriptome analyses from patients' cells suggest differentially spliced exons in some target genes. Together, these findings suggest that

these variants may exert a loss of function effect. To test our hypothesis, we are currently conducting additional functional assessments. Furthermore, we queried denovo-db and identified four additional individuals from DDD4K study harboring de novo variants in U2AF2, suggesting about 0.1% of affected individuals with DD/ID may result from a *de novo* variant in *U2AF2*. In summary, through multi-center collaborations, we demonstrate that *de novo* U2AF2 mutations are associated with a novel neurodevelopmental disorder.