Title: Development and validation of the PREMMplus clinical prediction model for multigene hereditary cancer risk assessment.

Matthew B. Yurgelun^{1,2,3}, Hajime Uno^{1,2}, C. Sloane Furniss¹, Chinedu I. Ukaegbu¹, Miki Horiguchi^{1,2}, Israel Gomy¹, Anu B. Chittenden¹, Tara Fehlmann¹, Amal Yussuf⁴, Holly LaDuca⁴, Judy E. Garber^{1,2,3}, Sapna Syngal^{1,2,3}

- ^{1.} Dana-Farber Cancer Institute, Boston, MA, USA
- ^{2.} Harvard Medical School, Boston, MA, USA
- ^{3.} Brigham & Women's Hospital, Boston, MA, USA
- ⁴ Ambry Genetics, Aliso Viejo, CA

Background: Current clinical prediction models provide syndrome-specific numeric estimates of an individual's likelihood of having a specific hereditary cancer syndrome (e.g., PREMM₅ for Lynch syndrome; BRCAPRO for *BRCA1/2*). With the emergence of multigene panel testing, there is a need to evaluate individuals' risk of carrying a pathogenic variant in a diverse array of cancer susceptibility genes in parallel. This study's aim was to develop and validate the PREMMplus clinical prediction model for multigene cancer risk assessment.

Methods: PREMMplus was developed in a cohort of 7296 individuals who had undergone germline multigene panel testing at a single academic cancer center. Logistic regression models with LASSO regularization were used to examine candidate predictive variables – including age, sex, ethnicity, and personal/family history of cancer – to provide a numeric estimate of an individual's likelihood of carrying a pathogenic/likely pathogenic germline variant in one of 19 cancer susceptibility genes (11 "Category 1" [*APC*, *BRCA1/2*, *CDH1*, *EPCAM*, *MLH1*, *MSH2*, *MSH6*, biallelic *MUTYH*, *PMS2*, and *TP53*] and 8 "Category 2" genes [*ATM*, *BRIP1*, *CDKN2A*, *CHEK2*, *PALB2*, *PTEN*, *RAD51C*, and *RAD51D*]). Model performance was validated in an independent dataset of 14845 individuals who had undergone multigene panel testing at a commercial laboratory.

Results: Using clinical characteristics, including personal/family history of 18 cancers plus colorectal adenoma burden, PREMMplus demonstrated excellent ability to predict pathogenic variants in Category 1 genes and acceptable performance with the addition of 8 Category 2 genes. Decision curve analyses support multigene germline testing for individuals predicted to have ≥2.5% probability of harboring a pathogenic germline variant in any Category 1 gene (Table). PREMMplus was well-calibrated and demonstrated comparable performance in the external validation dataset.

Conclusions: PREMMplus is the first validated risk assessment model to quantify an individual's likelihood of carrying pathogenic variants in a wide diversity of genes associated with established high risks of various cancers. Individuals with PREMMplus scores ≥2.5% should be referred for multigene panel testing. As expected, PREMMplus's discriminatory capacity was reduced with the inclusion of moderate penetrance cancer risk genes.

Cohort	Outcome	Sensitivity	Specificity	Positive	Negative	#	AUC
				Predictive	Predictive	Needed	(95%
				Value	Value	to Test	CI)
						to	
						Detect	
						1	
						Carrier	
Development	11	95.2%	20.4%	6.5%	98.7%	15.5	0.74
	genes						(0.71-
							0.77)
	19	90.1%	20.4%	10.7%	95.1%	10.0	0.67
	genes						(0.64-
							0.69)
Validation	11	85.1%	31.1%	5.8%	97.7%	17.3	0.68
	genes						(0.66 –
							0.71)
	19	77.5%	31.2%	10.3%	93.2%	9.7	0.60
	genes						(0.58 -
							0.62)