CTNNA1 germline variants associate with a disease spectrum extending beyond Hereditary Diffuse Gastric Cancer

<u>Silvana Lobo</u>^{1,2,3}, Patrick R Benusiglio^{4,5}, Florence Coulet⁶, Lise Boussemart^{7,8}, Lisa Golmard⁹, Isabel Spier^{10,11,12}, Robert Hüneburg^{11,12,13}, Stefan Aretz^{10,11,12}, Liselotte P Van Hest¹⁴, Judith Balmaña¹⁵, Sigrid Tinschert^{16,17}, Bryson Katona¹⁸, Melyssa Aronson¹⁹, Augusto Antoniazzi²⁰, Edenir Inês Palmero^{21,22}, Carrie Horton²³, Rachid Karam²³, Chrystelle Colas^{9,12}, Paulo Pereira^{1,24}, Carla Oliveira^{1,2,12,25,*}

¹i3S – Instituto de Investigação e Inovação em Saúde, Porto, Portugal

²IPATIMUP – Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal

³International Doctoral Programme in Molecular and Cellular Biotechnology Applied to Health Sciences (BiotechHealth) from Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal

⁴Unité fonctionnelle d'Oncogénétique clinique, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, AP-HP. Sorbonne Université, Paris, France

⁵Chirurgie générale et digestive, Hôpital Saint-Antoine, AP-HP. Sorbonne Université, Paris, France

⁶Unité fonctionnelle d'Onco-angiogénétique et génomique des tumeurs solides, Département de Génétique médicale, Hôpital Pitié-Salpêtrière, AP-HP. Sorbonne Université, Paris, France

⁷Université Nantes, Centre de Recherche en Cancérologie et Immunologie Nantes Angers, Institut National de la Santé et de la Recherche Médicale, Nantes, France

⁸Department of Dermatology, Nantes University Hospital, France

⁹Department of Genetics, Institut Curie, University Paris Sciences Lettres, Paris, France

¹⁰Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany

¹¹National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany

¹²Full Member of the European Reference Network on Genetic Tumor Risk Syndromes (ERN GENTURIS) – Project ID No 739547

¹³Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany

¹⁴Amsterdam UMC, Vrije Universiteit Amsterdam, Department of clinical genetics, Amsterdam, Netherlands

¹⁵Hereditary Cancer Group, Medical Oncology Department Hospital Vall d'Hebron, and Vall d'Hebron Institute of Oncology, Barcelona, Spain

¹⁶Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria

¹⁷IFLb Laboratoriumsmedizin Berlin GmbH, Windscheidstraße, Berlin-Charlottenburg, Germany

¹⁸Division of Gastroenterology and Hepatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA

¹⁹Zane Cohen Centre, Sinai Health System, Toronto, Canada

²⁰Cancer Genetics Departament, Barretos Cancer Hospital, Barretos, Brazil

²¹Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil

²²Department of Genetics, National Cancer Institute, Brazil

²³Ambry Genetics, Aliso Viejo, CA, USA

²⁴IBMC – Instituto de Biologia Molecular e Celular, Porto, Portugal

²⁵FMUP – Faculty of Medicine of the University of Porto, Porto, Portugal

*Corresponding author (carlaol@i3s.up.pt)

KEYWORDS: CTNNA1; Hereditary Diffuse Gastric Cancer; Germline Variants; Genotype-Phenotype Associations;

TOPIC: Research

SUB-TOPIC: Gastric cancer-related syndromes

ABSTRACT:

CDH1-associated Hereditary Diffuse Gastric Cancer (HDGC) predisposes to diffuse gastric cancer (DGC) and/or lobular breast cancer (LBC). *CTNNA1*/ α E-catenin germline truncating pathogenic variants cause HDGC and missense pathogenic variants cause Macular Dystrophy Patterned-2. The full *CTNNA1*-disease spectrum and variant-type associated causality is unknown. Large cohorts and *in vivo* models are essential to disclose genotype-phenotype associations.

Collaboration with ERN-GENTURIS partners, external Institutions and literature search, allowed collecting clinical data on 67 probands and 142 relatives *CTNNA1* germline variant carriers/relatives. We molecularly/clinically classified variants, categorized families according to HDGC-criteria and analyzed genotype-phenotype correlations. We developed a *Drosophila melanogaster* α E-catenin-knockdown model to study *CTNNA1* impairment in different tissues.

Sixty-seven families carried rare *CTNNA1* germline variants, being 32% Pathogenic (PV) and 32% Likely Pathogenic (LPV), all truncating. Early-onset DGC and Breast Cancer of unknown-histotype (BC) were the predominant phenotypes. In PV-carriers, DGC predominated (42%), followed by LBC (5%) and other HDGC non-classical cancer phenotypes, such as Colorectal, Prostate and Thyroid cancer (6%, 5% and 4%, respectively). LPV-carriers developed mainly BC and Melanoma (59% and 7%, respectively). Phenotypes differed significantly between PV- and LPV-families (p<0.00001). Most PV- and LPV-related cancers were early-onset. Drosophila α -catenin knockdown in wing and eye primordial tissues induced fly lethality, and surviving flies presented aggressive phenotypes and comorbidities. Human wild-type α E-catenin expression in the eye rescued fly survival and organ development, while a human α E-catenin bearing a HDGC PV, failed to rescue both abovementioned parameters.

Early-onset DGC/LBC are frequent cancers in *CTNNA1* PV-carriers, however, disease spectrum extends beyond HDGC-classical phenotypes. *CTNNA1* LPV-carriers disease spectrum diverges from classical-HDGC. Current data claims for phenotype-driven *CTNNA1*-specific variant classification rules, which can be supported by robust *in vivo* testing models, as the one we developed. The humanized *Drosophila* model enables functional analysis of *CTNNA1* germline variants in a tissue specific manner.

Acknowledgements: FCT-PhD fellowship(Ref:2020.05773.BD); LEGOH Project(Ref:PTDC/BTM-TEC/6706/2020); ERN-GENTURIS(Project-ID No.739547).