Do candidate genes increase clinical utility of hereditary cancer panels? When less is more

Jennifer Herrera-Mullar¹, Meghan C. Towne¹, Carolyn Horton¹, Amybeth Weaver¹, Jennifer M. Huang¹, Devon Lamb Thrush¹, Kelly Radtke¹, Bess Wayburn¹

¹Ambry Genetics, Aliso Viejo, CA

Jherreramullar@ambrygen.com

BACKGROUND

- Next generation sequencing (NGS) has spurred gene discovery and allowed for the creation of multigene panel tests (MGPT) for hereditary cancer predisposition (HCP).
- These discoveries have resulted in larger HCP-MGPT over the last decade.
- The goal of larger HCP-MGPT is to increase diagnostic yield.
- How does the inclusion of candidate HCP genes impact diagnostic yield?

WHAT IS A CANDIDATE GENE?

A gene that has been reported in the literature, but evidence is insufficient to characterize the gene-disease relationship. Also known as limited evidence genes or preliminary evidence genes.

Evidence type		Information type							
Case control Data	Size of study, appropri clinically and statistica intervals	+/-0-6							
Case Level Data	pLOF (consistent with genetic data) *Not applicable for disease/diseases with penetrance (start at			common th incomplete default 0.1)	2 default*				
	Other (default 0.1 poin with no additional evidence)	nts Functional evidence, co-segregation, <i>de novo</i> , hotspot [allow additional weight 0.5 – 1]			0.1 - 2				
Statistics	Excess of <i>de novo</i> , AR disease with extensive pedigree (LOD >3)								
Experimental Evidence									
Evidence type		Points							
Function	Biochemical function, protein interaction, expression								
Gene Disruption	In vitro experiments, mechanism consistent with reported variants, rescue experiments, experiments showing dosage effect								
Model Organism	Gene function similar to pathology of human disease, genotype and phenotype match human disease								
	Total Poin	oints							
Definitive				17+ known mechanism					
Strong			Characterized	13+					
Moderate				8 - 12					
Limited				>0 - 7					
No Known Disease Relationship		U	ncharacterized	0					
Disputed				-6 - <0					

TABLE 1. Gene-Disease Validity (GDV) Scoring

Genetic Evidence

METHODS

- Reported variants on HCP-MGPT offered (between 2014-2022) at a commercial laboratory were retrospectively reviewed.
- The frequency of pathogenic (P), likely pathogenic (LP) variants, and VUS were recorded and categorized according to four different GDV categories: uncharacterized (genes with limited/disputed GDV), moderate, strong, and definitive based on evaluation of published clinical and experimental evidence [Figure 1].
- Select genes with moderate or limited GDV for HCP at the start of the time frame (n=20) were reviewed for changes to GDV category [Table 2].
- GDVs were assessed in accordance with the ClinGen GDV framework, and variants were classified in accordance with ACMG guidelines.

FIGURE 1. Reported Variant Classification by GDV Score (91-gene Hereditary Cancer MGPT)

TABLE 2. GDV Score Changes Over Time for Select Genes

Gene	HCP-related phenotype	GDV at addition	GDV Current	Gene	HCP-related phenotype	GDV at addition	GDV Current
POT1	Melanoma and sarcoma	moderate	definitive	XRCC2	Breast cancer	moderate	disputed
				RAD50	Breast cancer	moderate	disputed
CTNNA1	Diffuse gastric cancer	moderate	moderate	(AD)			
				MRF11A			

- The inclusion of candidate genes on HCP-MGPT did not affect the diagnostic 1. yield, but substantially increased the VUS rate.
- Higher GDV scores resulted in more clinically actionable (LP/P) variants. 2.

Lower GDV scores resulted in higher VUS rates.

Most candidate genes either remained limited evidence or were 3.

downgraded to disputed during the time period assessed.

