Identification of an Alu insertion in MSH2 by Next-**Generation Sequencing in a Family with Lynch** Syndrome: An 8-year Diagnostic Odyssey

Amanda Jacquart¹, Stefano Rosati², Donald Basel², Jessica Grzybowski³ Michael Muriello² The Medical College of Wisconsin¹, Genomic Sciences & Precision Medicine Center (GSPMC)², Ambry Genetics³

Background

- Lynch syndrome (LS) is a well-known cause of hereditary colon cancer.
- Pathogenic variants and likely pathogenic variants in one of the mismatch repair (MMR) genes (MLH1, MSH2, MSH6 and PMS2 along with deletions of *EPCAM*) are known to cause LS.
- Alu insertions are the most abundant retrotransposon in the human genome and insertions of Alu elements have been shown to cause disease by either disrupting a coding region or a splice signal.
 - Retroelement insertions have been observed in cancer predisposition genes and were recently reported to be more common (1/325; 0.3%) than previously estimated (1/600; 0.16%).¹
- There have been previous reports of Alu insertions in MMR genes in families with LS.^{2,3}

Methods

- The mobile element (ME) detection software Mobster⁴ and the commercial laboratory's in-house developed software was used to detect unaligned and soft-clipped reads from the BAM file
 - The variant was confirmed by Sanger sequencing
- The mother's WGS BAM file data were again reviewed and reads covering this insertion were not identifiable (Figure 2)
 - Mobster was implemented to run on the maternal WGS
 - Split reads were detected on WGS in the same variant location
 - Standard WGS BWA alignment⁵ did not map the reads which contained more than 50% Alu reads and trimmed the reads with less than 50% Alu reads
 - This splice site was not detected by standard variant calling
 - Reads are assessed for small variants and structural variation (Figure 3)⁶

The MSH2/Alu insertion was undetected by conventional NGS variant calling methods

chr2:47,690,094

Human hg19	▼ chr2	▼ chr2:47,690,094-47,690,379	👚 🔹 🖗 🗖 🔅	< 🟳 I	
	p25.2 p24.3 p2	4.1 p23.2 p22.2 p21 p16.3 p16.1	p14 p13.2 p12 p11.2 q11	1 q12.1 q13 q14.2	q21.1
	- 4 47,690,100 bp		47,690,200 bp 	286 bp	
Mobster Coverage Profile	[0 - 24]				
Mobster Alignment					
GATK Coverage Profile	[0 - 28]				
GATK (BWA) Alignment					-

© 2020. Medical College of Wisconsin All rights reserved. May not be used or reproduced without written permission of the authors.

Case Report

- 16-year-old female diagnosed with stage 4 colon cancer (Figure 1)
- Colon tumor specimen showed abnormal microsatellite instability (MSI) and loss of protein expression of MSH-2 and MSH-6 by immunohistochemistry (IHC)
- Clinical history was unremarkable leading up to her diagnosis and she passed away 10 months later
- Patient's mother had a history of multiple colon polyps starting in her mid-20s
- Results from a LS screen performed on a colon tubular adenoma with focal high-grade dysplasia revealed abnormal MSI and the same absent protein expression
- She also had a history of a sebaceous adenoma and a squamous cell carcinoma of the scalp
- Maternal family history:
- Fulfilled Amsterdam Criteria II
- Paternal family history:
- Significant for multiple generations of breast cancer

300M of 455M

MEDICAL COLLEGE ® **OF WISCONSIN**

Prior to patient's passing

identified

MLH1, MSH2, MSH6, and PMS2

- cancer

Eight years later platform the same laboratory's NGS panel A Read Depth (RD) B Paired Reads (PR)

C Split Reads (SR)

event specific aligner such as Mobster.

There is a subset of patients with a ph
of LS and no identifiable germline pat

- - identifying retroelement insertions.
- This case demonstrates the value of reanalyzing short-read sequencing data for structural variants and retroelement events for cases that have not been previously diagnosed.

	Kete	eren	ice
1.	Qian Y et al. <i>Cancer Genet.</i> , 2017, 216-217,	4.	Th
	159–169.	5.	Li
2.	Kloor et al. <i>Hum. Genet.,</i> 2004, <i>115</i> (5), 432–		17
	438.	6.	Sti
3.	Solassol et al. <i>Hum. Mutat.,</i> 2019, <i>40</i> (6), 716–		Re
	720.		ht

nung DT et al. *Genome Biol.,* 2014, 15(10). H et al. *Bioinformatics*, 2009, 25(14), 1754– 760.

ructural Variation Detection Analysis (n.d.). etrieved from ttps://www.1010genome.com/sv-detection/