RNA Genetic Testing in Hereditary Cancer Improves Variant Classification and Patient Management

Rachid Karam1, Kate Krempely1, Marcy E. Richardson1, Kelly McGoldrick1, Heather Zimmermann1, Blair Conner2, Tyler Landrith1, Kyle Allen1, Amal Yussuf1, Huma Rana2, Samantha Culver2, John Lee3, Sarah Nashed4, Deborah Toppmeyer4, Debra Collins5, Ginger Haynes6, Tina Pesaran7, Holly LaDuca8, Jill S. Dolinsky9, Elizabeth Chao10

1Ambry Genetics, Aliso Viejo, California, USA; 2Dana Farber Cancer Institute, Boston, MA, USA; 3Cedars Sinai Medical Center, Los Angeles, California, USA; 4Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, NJ, USA; 5University of Kansas Medical Center, Kansas City, KS, USA; 6University of California, Irvine, California, USA.

BACKGROUND

- DNA genetic testing (DGT) for hereditary cancer is becoming widespread; however, variant interpretation remains a challenge.
- Alterations predicted to impact splicing are frequently classified as uncertain (VUS) and likely pathogenic (VLP), as confirmation of the impact requires RNA analysis.
- We aimed to determine the impact RNA genetic testing (RGT) on variant classification of these alterations and clinical management of patients.

METHODS

- 64 splice variants detected by DGT in genes associated with hereditary breast and ovarian cancer (HBOC), Lynch syndrome (LS), and hereditary diffuse gastric cancer (HDGC) were selected for supplemental RGT (Figure 1).
- RGT was performed by CloneSeq, as previously described1. Subsequent classification review was done following ACMG/AMP guidelines3.
- A follow-up survey was sent to all medical providers who received a reclassification report for these variants to assess the impact of RGT on the clinical management of these patients.
- To quantify the potential impact of RGT on a larger scale, we queried a cohort of 307,812 patients undergoing DGT for hereditary cancer susceptibility for identified variants predicted to affect splicing.

RESULTS

- Among the 64 putative splice variants identified in 13 genes RGT data clarified the classification for (Figure 2):
 - 90% of HBOC germline DNA variants in ATM, BRCA1, BRCA2, BRIPI, PALB2, RAD50, RAD51C, RAD51D
 - 100% of LS germline variants in MLH1, MSH2, MSH6, PMS2, with 70% being reclassified as clinically actionable.
 - 70% of HDGC germline DNA variants in CDH1
 - RGT resulted in reclassification of 85.9% of all tested variants in hereditary cancer genes (Figure 2):
 - 50% upgraded to clinically actionable variants
 - 35.9% downgraded to benign.
- Results from a clinician follow-up survey demonstrated RGT resulted in changes to the clinical management of these patients (Figure 3).

Figure 1: Genes Tested by RGT

![Figure 1: Genes Tested by RGT](image1)

Figure 2: RNA Genetic Testing in Hereditary Cancer Improves Variant Classification

![Figure 2: RNA Genetic Testing in Hereditary Cancer Improves Variant Classification](image2)

Figure 3: Changes in medical management following RGT

![Figure 3: Changes in medical management following RGT](image3)

Pedigrees from selected cases undergoing RGT

![Pedigrees from selected cases undergoing RGT](image4)

TAKE-HOME POINTS

- RGT as a supplement to DGT improves the classification of variants identified in hereditary cancer predisposition genes.
- RGT-based variant reclassifications impacted management for both patients and their family members, with increased screening and/or more aggressive risk-reducing interventions recommended in most instances of VUS reclassification to VLP.
 - While patient management recommendations were unlikely to change when VUSs were downgraded to VLP, screening recommendations for family members were reduced in the majority of these cases.
- RGT is expected to affect medical management in at least 1 in 5 patients.

REFERENCES