NeuropathySelect: Analyses of 81 Genes Associated with Hereditary Neuropathy

RESULTS

Pathogenic Mutation(s): None Detected
Variant(s) of Unknown Significance: None Detected
Gross Deletion(s)/Duplication(s): None Detected

SUMMARY

NEGATIVE: No Clinically Significant Variants Detected

INTERPRETATION

- No pathogenic mutations, variants of unknown significance, or gross deletions or duplications were detected.
- **Risk Estimate**: low likelihood of variants in the genes analyzed contributing to this individual's clinical history.
- Genetic counseling is a recommended option for all individuals undergoing genetic testing.

Genes Analyzed (81 total): ATL1, DNAJB2, DST, FAM134B, FGD4, FIG4, FUS, GAN, GDAP1, GJB1, HINT1, HSPB1, IGHMBP2, IKBKAP, KIF1A, LMNA, LRSAM1, MFB2, MPZ, MTRM2, NDRG1, NEFL, NGF, NTRK1, OPTN, PLEKHG5, PMP22, PRDM12, PRX, REMP1, SBF2, SCN9A, SH3TC2, SIGMAR1, SLC25A46, SLC52A2, SLC52A3, SLC52A46, SLC52A3, SPG11, TTR, VRK1 and WNK1 (sequencing and deletion/duplication); AARS, AIFM1, APOA1, ATL3, ATP7A, BICD2, BSCL2, CHCHD10, DCTN1, DNM2, DNMT1, DYN1H1, EGR2, FBXO38, GARS, GNB4, GSN, HARS, HSPB8, INF2, LITAF, MARS, MORC2, NEFH, PDK3, PRPS1, RAB7A, SCN10A, SCN11A, SETX, SLC5A7, SPTLC1, SPTLC2, TARDBP, TFG, TRPV4, UBA1, VAPB, VCP and YARS (sequencing only).

Order Summary: The following products were included in the test order for this individual. Please note: tests on hold and those that have been cancelled (including reflex testing steps cancelled due to a positive result in a preceding test) are excluded. For additional information, please contact Ambry Genetics.
- NeuropathySelect (Product Code 9570)

ELECTRONICALLY SIGNED BY

Negar Ghahramani, PhD, MS, DABMGG, CGMBS, on 07/24/2019 at 07:51:40 am
ASSAY INFORMATION

General Information: Peripheral neuropathies (PNP), also known as polyneuropathy disorders affecting a variety of peripheral nerve cells and fibers (motor, sensory, and autonomic), are a relatively common diverse group of diseases with an estimated prevalence of 5-8%. Clinically this group of disorders presents with distal symmetric sensorimotor neuropathy most frequently. Heterogeneous clinical symptoms are observed depending upon involvement of sensory, motor, or autonomic nerve fiber impairment. Symptoms of PNP may include hypalgesia, heat and cold allodynia, dysesthesia, sensory ataxia, paresis, muscle atrophy, hypotonia, hypohydrosis and/or anhidrosis, bladder dysfunction, indigestion, cardiac arrhythmias and tachycardia, gastroparesis, urogenital dysfunction, and periodic pain. Hereditary forms of peripheral neuropathy include but are not limited to hereditary motor and sensory neuropathy (HMSN), often referred to as Charcot-Marie-Tooth disease (CMT), hereditary motor neuropathies (HMN), and small fiber neuropathies (SFN) (Hanewinckel R et al. Handb Clin Neurol, 2016;138:263-82; Sommer C et al. Dtsch Arztebl Int, 2018 Feb;115:83-90). Specific therapies for PNP are based on the precise etiology diagnosis and it is often hard to distinguish inherited PNP from sporadic or acquired forms of neuropathy without genetic testing. Over 100 genes have been identified as associated with hereditary peripheral neuropathies with autosomal dominant, autosomal recessive, X-linked, and mitochondrial inheritance patterns observed. Given the overlap in genetic causes and variability in clinical symptoms and presentation, one comprehensive inherited neuropathy test may be the most effective way of identifying at-risk individuals, or confirming a diagnosis (England JD et al. Neurology, 2005 Jan;64:199-207; Eggermann K et al. Dtsch Arztebl Int, 2018 Feb;115:91-97; Mary P et al. Orthop Traumatol Surg Res, 2018 Feb;104:S89-S95).

Methodology: Ambry’s NeuropathySelect™ is a comprehensive screen of 81 genes associated with peripheral neuropathies. Genomic deoxyribonucleic acid (gDNA) is isolated from the patient’s whole blood. Samples are prepared using the IDT xGen Exome Research Panel V1.0 (Integrated DNA Technologies). Sequence enrichment of the targeted coding exons and adjacent intronic nucleotides is carried out by a bait-capture methodology using long biotinylated oligonucleotide probes followed by polymerase chain reaction (PCR) and Next-Generation sequencing. Initial data processing, base calling, alignments and variant calls are generated by a custom bioinformatics pipeline. Additional Sanger sequencing is performed for regions missing or with insufficient read depth coverage for reliable heterozygous variant detection. Reportable small sequencing is performed for regions missing or with insufficient read depth coverage for reliable heterozygous variant detection.

Sequence analysis is limited to the following 81 genes and associated NCBI reference sequences: AARS (NM_001605.2), AIFM1 (NM_004208.3), APOA1 (NM_000039.1), ATL1 (NM_015915.4), ATP7A (NM_000052.4), BICD2 (NM_001003800.1), BSCL2 (NM_032687.6), CHCHD10 (NM_213720.1), DCTN1 (NM_004082.4), DNAJB2 (NM_001039550.1), DNM2 (NM_001005360.2), DNT1 (NM_001379.2), DST (NM_001144769.2), DYNC1H1 (NM_001376.4), EGFR2 (NM_000399.3), FAM134B (NM_01034850.1), FBXO38 (NM_205836.1), FGD4 (NM_139241.2), FIG4 (NM_014845.5), FUS (NM_004960.3), GAN (NM_022041.3), GARS (NM_002047.2), GADP1 (NM_018972.2), GJB1 (NM_001665.5), GNB4 (NM_021629.3), GSN (NM_00177.4), HARS (NM_002109.3), HINT1 (NM_005340.5), HSPB1 (NM_001540.3), HSPB8 (NM_014365.2), IGHMBP2 (NM_002180.2), IKBAP (NM_003640.3), IN2F (NM_022489.3), KIF1A (NM_001244008.1), LITAF (NM_004862.3), LMNA (NM_170707.2), LRSAM1 (NM_138361.4), MARS (NM_049990.3), MFN2 (NM_014874.3), MORC2 (NM_01303256.2), MPZ (NM_000530.6), MTMR2 (NM_016156.5), NDRG1 (NM_006906.3), NEFH (NM_021076.3), NEFL (NM_006158.3), NGF (NM_002506.2), NTRK1 (NM_001012331.1), OPTN (NM_021980.4), PKD3 (NM_001142386.2:c.473G→A[+R158H]), PLEKHG5 (NM_006313.3), PMP22 (NM_000304.2), PRDM12 (NM_021619.2), PRPS1 (NM_002764.3), PRX (NM_181882.2), RAB7A (NM_004637.5), REEP1 (NM_022912.2), SBF2 (NM_003962.3), SCN1A (NM_006514.2), SCN1B1 (NM_014139.2), SCN9A (NM_002977.3), SETX (NM_015046.5), SH3TC2 (NM_024577.3), SIGMAR1 (NM_005866.2), SLC25A46 (NM_138773.1), SLC5A2 (NM_024531.3), SLC5A3 (NM_033409.3), SLC5A7 (NM_021815.2), SPG11 (NM_025137.3), SPTLC1 (NM_006415.2), SPTLC2 (NM_004863.3), TARDBP (NM_007375.3), TFG (NM_006075.5), TRPV4 (NM_021625.4), TTR (NM_000371.3), UBA1 (NM_003334.3), VAPB (NM_004738.4), VCP (NM_007126.3), VRK1 (NM_003834.2), WNK1 (NM_213655.4), and YARS (NM_003680.3).

Analytical Range: The NeuropathySelect™ test targets detection of DNA sequence variants in 81 genes by either Next-Generation or Sanger sequencing of all coding domains and plus at least 6 bases into the 5’ and 3’ ends of all the introns. Gross deletion/duplication analysis determines gene copy number for the exons of 41 genes (specified on 1st page of report) in which copy number variations are clinically relevant.

Result Reports: In result reports, sequencing alterations classified as pathogenic mutations, VLPs, or VUS are always reported. Gross deletions and duplications classified as pathogenic mutations or VLPs are reported when confirmed. Classifications are based on the following definitions and clinical recommendations:

- **Pathogenic Mutation**: alterations with sufficient evidence to classify as pathogenic (capable of causing disease). Targeted testing of at-risk relatives and appropriate changes in medical management for pathogenic mutation carriers recommended. Previously described pathogenic mutations, including intrinsic mutations at any position, are always reported when detected.
- **Variant, Likely Pathogenic (VLP)**: alterations with strong evidence in favor of pathogenicity. Targeted testing of at-risk relatives and appropriate changes in medical management for VLP carriers typically recommended. Previously described likely pathogenic variants, including intrinsic VLPs at any position, are always reported when detected.
• **Variant, Unknown Significance (VUS):** alterations with limited and/or conflicting evidence regarding pathogenicity. Familial testing via the Family Studies Program may be recommended. Medical management to be based on personal/family clinical histories, not VUS carrier status. Note, intronic VUSs are always reported out to 6 basepairs from the splice junction when detected.

Sequence alterations of unlikely clinical significance (those with strong/very strong evidence to argue against pathogenicity) and gross deletions and duplications classified as VUS and of unlikely clinical significance are not routinely included on results reports. These include findings classified as “likely benign” and “benign” alterations.

Assay Information Continued on Next Page
ASSAY INFORMATION (Supplement to Test Results - Continued)

Resources: The following references are used in variant analysis and classification when applicable for observed genetic alterations.

7. Exome Variant Server, NHLBI Exome Sequencing Project (ESP) [Internet]. Seattle WA. Available from: evs.gs.washington.edu/EVS.

Test Limitations and Disclaimer: This test was developed and its performance characteristics were determined by Ambry Genetics. It has not been cleared or approved by the US Food and Drug Administration. The FDA does not require this test to go through premarket FDA review. It should not be regarded as investigational or for research. This test should be interpreted in context with other clinical findings. This report does not represent medical advice. Any questions, suggestions, or concerns regarding interpretation of results should be referred to a genetic counselor, medical geneticist, or physician skilled in evaluating the relevant medical literature. This laboratory is certified under the Clinical Laboratory Improvement Amendments (CLIA) as qualified to perform high complexity clinical laboratory testing. The following types of mutations are detectable: nucleotide substitutions, deletions, insertions and small indels. Multi-exon deletions smaller than 5 exons will not be identified with this analysis. This test is not intended to systematically analyze the following types of mutations: deep intronic variations, long repeat sequences, portions of genes with highly homologous pseudogenes, trinucleotide repeat sequences, mutations involved in tri-allelic inheritance, mitochondrial genome mutations, epigenetic effects, oligogenic inheritance, and X-linked recessive mutations in females who manifest disease due to skewed X-inactivation and other unknown abnormalities. A negative result from the analysis cannot rule out the possibility that the tested individual carries a rare unexamined mutation or mutation in the regions outside of the reportable range. This test is designed and validated to be capable of detecting >99% of described abnormalities in the genes and chromosome regions represented on the test (analytical sensitivity). The clinical sensitivity of this test may vary widely according to the specific clinical and family history. Although molecular tests are highly accurate, rare diagnostic errors may occur. Possible diagnostic errors include sample mix-up, erroneous paternity identification, technical errors, clerical errors, and genotyping errors. Genotyping errors can result from trace contamination of PCR reactions, from rare variant results that may interfere with analysis, or from other sources.